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Abstract

We present a type-and-effect system that derives an exception-
annotated type signature for a given term of a simply typed non-
strict functional language with general recursion and a list data
type. This signature declares the set of exceptional values that may
be present among the values of the term, or produced by terms
of function type. Higher-ranked effect polymorphism and effect
operators reminiscent of System F, help to achieve precision and
clarity.

By restricting the use of higher-ranked polymorphism and op-
erators to the effects, we conjecture the inference problem to re-
main decidable (in contrast to the type inference problem for Sys-
tem F,, ). We give a type inference algorithm that builds on the tech-
niques developed by |Holdermans and Hage| (2010).

The types in System Fg, form a simply typed A-calculus. Sim-
ilarly, the effects in our system form a simply typed algebraic
A-calculus embellished with the ACI1-structure of sets (/\U). We
briefly study this language in its own right.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure; D.3.3 [Programming Languages]: Language Constructs
and Features—Polymorphism

General Terms Languages, Design, Theory

Keywords exceptions, higher-ranked polymorphism, polymor-
phic recursion, type-and-effect systems, type-based program anal-
ysis, type inference, type operators, unification theory

1. Introduction

An often-heard selling point of non-strict functional languages is
that they provide strong and expressive type systems that make
side-effects explicit. This supposedly makes software more reliable
by lessening the mental burden placed on programmers. Many
programmers with a background in object-oriented languages are
thus quite surprised, when making the transition to a functional
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language, that they lose a feature their type system formerly did
provide: the tracking of uncaught exceptions.

There is an excuse for why this feature is missing from the
type systems of contemporary non-strict functional languages: in
a strict first-order language it is sufficient to annotate each function
with a single set of uncaught exceptions the function may raise;
in a non-strict higher-order language the situation becomes sig-
nificantly more complicated. Let us first consider the two aspects
‘higher-order’ and ‘non-strict’ in isolation:

Higher-order functions The set of exceptions that may be raised
by a higher-order function is not given by a fixed set of excep-
tions, but depends on the set of exceptions that may be raised by
the function that is passed as its functional argument. Higher-
order functions are thus exception polymorphic.

Non-strict evaluation In non-strictly evaluated languages, excep-
tions are not a form of control flow, but a kind of value. Typ-
ically the set of values of each type is extended with an ex-
ceptional value 4 (more commonly denoted L, but we shall
not do so to avoid ambiguity), or family of exceptional val-
ues 4%. This means we do not only need to give all functions
an exception-annotated function type, but give every other ex-
pression an exception-annotated type as well.

Now let us consider these two aspects in combination. Take as
an example the map function:

map : Vaf.(a — B) - [a] = [B]
map = Af.Axs. case xs of
(] =]
uys)—>fyimapfys
We denote the exception-annotated type of a term by T & £

or T(£). For function types we occasionally write 71 (£1) i T2(&2)
instead of (T1(§1) — T2(£2))(&). If € is the empty exception set,
then we sometimes omit this annotation completely.

The fully exception-polymorphic and exception-annotated type,
or exception type, of map is

map : Va B ey e3.(Vey.a{er) AN Blesz er))
L (Ves es.[alea)]les) = [Blea es U es)lies))

The exception type of the first argument Vej. (e} ) SN Bler e1)
states that it can be instantiated with a function that accepts any
exceptional value as its argument (as the exception set e is univer-
sally quantified) and returns a possibly exceptional value. In case
the return value is exceptional, then it is one from the exception set
ey e1. Here e, is an exception set operator—a function that takes
a number of exception sets and exception set operators, and trans-
forms them into another exception set, for example by adding a
number of new elements to them, or discarding them and returning
the empty set. Furthermore, the function (closure) itself may be an
exceptional value from the exception set e3.



The exception type of the second argument [« (e4)]{es) states
that it should be a list. Any of the exceptional elements in the
list must be exceptional values from the exception set e4. Any
exceptional values among the constructors that form the spine of
the list must be exceptional values from the exception set es.

The result of map is a list with the exception type [B(ez eq4 U
e3)](es). Any exceptional constructors in the spine of this list must
be exceptional values from the exception set es, the same excep-
tion set as where exceptional values in the spine of the list argu-
ment xs come from. By looking at the definition of map we can see
why this is the case: map only produces non-exceptional construc-
tors, but the pattern-match on the list argument xs propagates any
exceptional values encountered there. The elements of the list are
produced by the function application f y. Recall that f has the ex-

ception type Vej.a{eq) 5, B{ex e1). Now, one of two things can
happen:

1. If f is an exceptional function value, then it must be one from
the exception set e3. Applying the exceptional value to an argu-
ment causes the exceptional value to be propagated.

2. Otherwise, f is a non-exceptional value. The argument y has
exception type o {eq)—it is an element from the list argument
xs—and so can only be applied to f if we instantiate e] to eq
first. If f y produces an exceptional value, then it is thus one
from the exception set e, e4.

To account for both cases we need to take the union of the
two exception sets, giving us a value with the exception type
Blez es U es).

To get a better intuition for the behavior of these exception types
and exception set operators, let us see what happens when we apply
map to two different functions: the identity function id and the
constant exception-valued function const 4. These two functions
can individually be given the exception types:

id = Axx :Vej.ae) E) aler)
const 4 = Ax.4® Vej.a{er) g BUE})

The term id merely propagates its argument to the result un-
changed, so it also propagates any exceptional values unchanged.
The term const 4¥ discards its argument and always returns the
exceptional value 4®. This behavior of id and const 4 is also
reflected in their exception types.

When we apply map to id, we need to unify the exception type

of the formal parameter Ve;.a{e1) REN B(ea e1) with the exception

type of the actual parameter Ve;.x{(e;) — «{ej). This can be
accomplished by instantiating e3 to @ and e; to Ax.x—as (Ax.x) e]
evaluates to e;—giving us the resulting exception type

map id : Va eq es.[a{es)]{es) g [or{es)](es)

In other words, mapping the identity function over a list propagates
all exceptional values already present in the list and introduces no
new exceptional values.

When we apply map to const 4® we unify the exception type

]
of the formal parameter with Vej.o(e;) — B({E}), which can
be accomplished by instantiating e3 to @ and e, to Ax.{E}—as
(Ax.{E}) e evaluates to {E}—giving us the exception type

map (const %) : Va B ey es.[ales)](es) = [BUED(es)

In other words, mapping the constant function with the exceptional
value 4F as its range over a list discards all existing exceptional
values from the list and produces only non-exceptional values or
the exceptional value 4 F as elements of the list.

1.1 Overview

In Section [2| we introduce the AY-calculus, a simply typed A-
calculus embellished with an associative, commutative, idempotent
and unit (ACI1) structure. The AY-calculus forms the language of
effects in the type-and-effect system. Section[3|describes the source
language to which the analysis applies. In Section[d] we present the
language of exception types and two type-and-effect systems for
deriving exception types: a declarative type-and-effect system and a
syntax-directed elaboration system that also produces an explicitly
typed term. A type inference algorithm for this type-and-effect
system is given in Section[3] Finally, we present related work in this
area and discuss some directions for further research in Sections [6]
and

1.2 Contributions

This paper makes the following contributions:

® A A-calculus extended with a union-operator that respect the
associative, commutative, idempotent and unit structure of sets.

® A type-and-effect system with higher-ranked effect-polymorphic
types and effect operators that precisely tracks exceptions.

® Aninference algorithm for these higher-ranked exception types.

Some of the key insights used in the inference algorithm—in
particular the facts that an underlying type can be completed to a
most general exception type (Figure [8), and that the form of the
types encountered in the inference algorithm makes it both easy to
unify two types (Figure[I6) and compute the least upper bound of
two types (Figure [T7)—were first noted by [Holdermans and Hage
(2010). Our inference algorithm differs in a number of aspects.
Notably, by the use of reduction of AY-terms instead of constraint
solving and in the manner in which recursive definitions in the
source language are handled by the algorithm.

2. The AV-calculus

The AY-calculus is a simply typed A-calculus extended at the term-
level with empty set and singleton set constants, and a set union
operator.

2.1 Syntax

We let x € Var range over an infinite set of variables and ¢ € Con
over a non-empty set of constants.

Types
teTy = » (base type)
| 11> 1 (function type)

Terms
teTm :=x (variable)
| Ax:tt (abstraction)
| t1tp (application)
| @ (empty set)
| {c} (singleton set)
| 11Uty (union)

Environments

I'eEnv := 0| x:t

Figure 1. AY-calculus: syntax



2.2 Typing relation

The typing relation of the AY-calculus is an extension of the typing
relation of the simply typed A-calculus.

'x:tikt:1m

[T-VAR] [T-ABS]

I''x:thkx:1 IF'FAx:nit:11 > 102

'tt:ti—>1n TI'FHh:n
'ty

[T-APP]

[T-EMPTY] [T-CoN]

'-0:x 'kE{c}:»

I'tty:t I'Ft:t
'FnUn:t

[T-UNION]

Figure 2. AY-calculus: type system

The empty set and singleton set constants are of base type and
the set union of two terms can only be taken if the involved terms
have the same type.

2.3 Semantics

In the AY-calculus, terms are interpreted as sets and types as pow-
ersets.

Types and values

Vy = P(Con)
Vi = P(Vrl g Vrz)
Environments
p:Var — U{Vf | T type}
Terms

[x]o = p(x)
[Ax : t]p = {Av € Vo [t] pixsv] }
11 2] = U {e([2]p) | ¢ € [11]p}
2l, =9
[{eilp = {c}

[t1 U2]p = [t1]p U (2]

Figure 3. AY-calculus: denotational semantics

2.4 Subsumption and observational equivalence

The set-structure of the AY-calculus induces a partial order on the
terms.

Definition 1. Denote by C[] a context—a AY-term with a single
hole in it—and by C [¢] the term obtained by replacing the hole in
C[] with the term .

Definition 2. Let ¢#; and 7, be terms such that I" - ¢ : 7 and
I' + tp : t. We say the term t, subsumes the term ¢, written
I' F t1 < tp, if for any context C[] such that = CJz;] : * and
F C[t2] : * we have that [C[t1]]g € [Clt2]]g-

Definition 3. Let 71 and ¢, be terms such that I" - ¢; : 7 and
I' - tp : ©. We say that the terms #1 and t, are observationally
equivalent, denoted as I' - t1 =~ ¢, if

1. '+t Stpand I' F 1 < 1y, or equivalently that
2. for any context C[] such that = C[t1] : » and - CJtz] : * we
have that [[C [tl]]]@ = [[C [12”]@.

2.5 Normalization

To reduce AY-terms to a canonical normal form we combine the
B-reduction rule of the simply typed A-calculus with rewrite rules
that deal with the associativity, commutativity, idempotence and
identity (ACI1) properties of the set union operator.

2.5.1 p-and y-reduction

If a term ¢ is n-long—i.e., it cannot be n-expanded without intro-
ducing additional 8-redexes—it can be written in the form

t=Ax1 ---xn.fl(l‘]],...,l‘lql) J---u fp(lpl,,..,lpqp)

where f; can be a free or bound variable, a singleton-set constant,
or another 7-long term; and ¢; is equal to the arity of f; (for all
1 <i < p). Here we have removed any empty set constants (unit
elements), duplicate terms f; (#;1. .... tjg;) (idempotent elements),
and ‘forgotten’ how the set union operator associates.

A normal form v of a term t—obtained by repeatedly applying
the reduction rules from Figure [4] and removing any empty set
constants and duplicate terms—can be written as

v =Ax1 - Xpk1(V115 s V1g) U - Ukp(Up1, ..y Upg,)

where k; can be a free or bound variable, or a singleton-set con-
stant, but not a A-abstraction (as this would form a §-redex), nor a
union (as this would form a y; -redex).

Oxi) 1 — 11 o /] DV BETA]

[R-GAMMA ]
(tU---Uty)t — 1 tU---Utyt

R-G
Ax.t))U---UAxty) —> Axtp U Uty [R-GAMMA? ]

Figure 4. AY-calculus: reduction

2.5.2 Canonical ordering

To be able to efficiently check two normalized terms for definitional
equality up to ACI1, we also need to deal with the commutativity
of the union operator. We can bring normalized terms into a fully
canonical form by defining a total order on terms and use it to order
unions of terms.

First, pick a strict total order < on variables and constants. The
order must be fixed and be invariant under a-renaming of variables
(for example, choose the De Bruijn index of a variable), but can
otherwise be arbitrary. We extend this order to a total order on Sy-
normal n-long terms in the following manner:

1. Given two fully applied terms k(v1, ..., vs) and k' (v], ..., v,)
we define:
k(vy,...,vp) < k/(v/l, ey Ul) ifk <k’
kU1, o Vi o Up) < kU1, oo Vi1, V)4 ) T U < V)
2. Given two values Ax1 -+ xp. K1 U---UK; _jUK; U---UKp

and Axy -+ xp. K1 U---UK; 1 UK/ U---U K, that have been

q
ordered such that K1 < -+ < K; 1 < K; < +-- < Kp and

Ky << Kj—1 < K] <--- < K, we define:
Axy-xp. Ky U---UK; UK; U---UKp
<Axy--xp. K1 U---UK; UK;U---UK,
if K; < K/

Given a term ¢ with the types of the free variables given by
the environment I", we denote by ||7 || i the fy-normal 5-long and
canonically ordered derivation of the term ¢.



2.6 Pattern unification

Definition 4. A AY-term is called a pattern if it is of the form
f(e1,....,en) where f is a free variable and ey, ..., e, are distinct
bound variables.

Note that this definition is a special case of what is usually called
a pattern in higher-order unification theory (Miller||1991} |Dowek
2001).

If f(eq,...,en) is a pattern and ¢ a term, then the equation

fitag—>--—>m—o>thEVer it ....en . fe1,....en) =t
has a unique solution given by the unifier

0=|[fr Xer:11,....en:Tn.t].

2.7 Widening

Typically we want the reduction rules of a A-calculus to respect the
(observational) equivalence of terms: if t; —> 15, then t; =~ t5.
As the AY-calculus does not only have the equivalence relation =
defined on its terms, but also a subsumption preorder <, it is also
interesting to look at reduction rules t; —> #p such that t; < 5.
We will call such reduction rules widening rules. Widening rules
may rewrite a closed term #1 of base type to a term ¢ that denotes
a superset of the set denoted by 77, but never to a subset or incom-
parable set.

A potential application of widening rules is to reduce the com-
plexity of a AY-term. In some contexts it may be sound to extend
the denotation of a term with additional elements, as long as no ele-
ments are removed from it. Even if such a denotation is no longer a
minimal sound denotation, the reduction in complexity of the term
may be a worthwhile trade-off in some scenarios.

A reduction rule of the form C[t;] —> C|t2] is a widening rule
if 11 < tp. Furthermore, it is the case that #; < #1 Ut for any terms
t1 and 7. An example of a widening rule that can be constructed
using these observations is:

R-MERGE
Ukt e tg) U s UK, s b)) U e L !

— Uk Ut e g Ut) U -

This widening rule will merge any two terms together that have
the same constant or variable at their heads.

Example 1. The widening rule R-MERGE can cause the denota-
tion of a term to increase; it is a proper widening rule. Let #1 and 7
be the terms

f=Af.f (Ax.0) {C}U [ (Ax.x) @
tr =Aff (Ax.x){C}

where C is an arbitrary constant. Then ¢; can be widened to 7.
However t1 (Ag.Ay.g y) reduces (without using the widening rule)
to @, while £, (Ag.Ay.g y) reduces to {C}.

Adding this widening rule to the normalization procedure can
decrease the size of the normal forms. In a normal form v belonging
to a term ¢

V= Ax1 - Xpk1(V11, s V1g ) U - U kp(Up1, -y Upg,y)

the number of subterms p will now be bounded by the number of
distinct free variables, bound variables and constants occurring in
the term ¢, as each can occur at most once at the head of a subterm
ki (i1, ..., vig; ). It furthermore allows for a more efficient canon-
ical ordering procedure. We no longer have to compare complete
terms, but can order terms based on the atom occurring at the head
of each term.

3. Source language

The type-and-effect system is applicable to a simple non-strict
functional language that supports boolean, integer and list data
types, as well as general recursion.

Terms

teTm = x (term variable)
| cr (term constant)
| éﬁ (exceptional constant)
| Ax:ztt (term abstraction)
| 1112 (term application)
| fixx:tt (general recursion)
| t1seqtz (forcing)
| t1 1 (operator)
| if 71 then 7, else 73 (conditional)
|l (nil constructor)
| 11 (cons constructor)
| casety of {[] — t2;x1 2 xo2 > t3} (list eliminator)

Values

veVal i= ¢ |Ax vt [fixx:nt | []; |t1:t2

v € ExnVal = éf | v

Figure 5. Source language: syntax

Most constructs in Figure [3] should be familiar. The seq-
construct evaluates the term on the left to a value and then continues
evaluating the term on the right.

Missing from the language is a construct to ‘catch’ exceptional
values. While this may be surprising to programmers familiar with
strict languages, it is a common design decision to omit such a con-
struct from the pure fragment of non-strict languages. The omission
of such a construct allows for the introduction of a certain amount
of non-determinism in the operational semantics of the language—
giving more freedom to an optimizing compiler—without breaking
referential transparency.

The values of the source language are stratified into non-
exceptional values v and possibly exceptional values .

3.1 Underlying type system

The type system of the source language is given for reference in
Figure [6] This is the underlying type system with respect to the
type-and-effect system that is presented in Section f] We assume
that any term we type in the type-and-effect system is already well-
typed in the underlying type system.

3.2 Operational semantics

The operational semantics of the source language is given in Fig-
ure 7] Note that there is a small amount of non-determinism in the
order of reduction. For example, in the derivation rules E-OPEXN;
and E—OPEXNzEl

The reduction rules E-ANNAPP and E-ANNABSAPP apply to
constructs that are introduced to the language in Section [4] This
also holds for the additional annotations on the A-abstraction and
the fix-operator.

''We do not go so far as to have an imprecise exception semantics (Pey-
ton Jones et al|[1999). For example, when the guard of a conditional eval-
uates to an exceptional value (E-IFEXN), we do not continue evaluation of
the two branches in exception finding mode.



Fx:tikt:m

—— [U-VAR — [U-CoN U-CRASH U-ABS
F,x:rl—x:r[ I Fl—cr:r[ ] éﬁ:r[ I Fl—kx:rl.t:rl—>r2[ !
't I'kHty: Ix:tkt: I'kFty:int 't :int
LR 22 rgoapp] — 2T T iRy 1-m 2 M 0P
'kttt IFHfixx:tt:71 't &t : bool
'kt 'kt I'tFty:bool 'kt I'F1t3:
1:71 2:72 [U-SEQ] 1 (TO 2:7T 3:°T [U-IF]
'kt seqtr: 1 I' -ift; thenty else t3 :
''tty:t 'EFt:r] ''tty:[t] 'kt Nixyit,x:[ulbta:t
— [U-NIL U-CONSs U-CASE
I"I—[],:[r][ ] 'kttt [ ] I'tcasetj of {[| > t2;x1 ixa > 13} T ! ]

Figure 6. Underlying type system (I" ¢ : 7)

Hh — t{
—— [E-ApP — E-APPABS] ————— [E-APPEXN
1ty —1 tz[ ] (Ax:r&g.tl)tz—nl[tz/x][ ] é€;2_>é€[ I
L B ANNAPP] [E-ANNAPPABS]
t (&) — 1t (§) (Ae i k.t) (E) —> t[E/e]
L0 [E-FIX,] [E-FIXo ]
fixx:T&EL — fixx T &EL ! fixx:T&EL —> tffixx:T&EL/X] 2
Hh — li ) — té
———— L [Eopy] ————2— [E-Opy] [E-OP]
h®h —1&n ndh—1 et v1 @ v2 —> [u1 ® v2]
———— [E-OPEXN;] — [E-OPEXNj]
ton — 4t Yonet— 4t 2
h—1 [E-SEQ1] [E-SEQ2] [E-SEQEXN]
11 seq 1p —> 1] seq I A vy seqty —> tn Q2 4l seqty — 4t <
1 — ti
: = [E-TIF] [E-IFTRUE]
if 71 then 15 else 13 —> if 7| then 7; else t3 if true then 7 else 13 —> 1,
_ [E-IFFALSE] [E-IFEXN]
if false then 7, else 13 —> #3 if 4¢ then 1, else 13 —> 4¢
h—n [E-CASE]
case t1 of {[] > t2;x1 1 x3 > 13} —> case t{ of {[| > t2;x1 2 x3 > 13}

[E-CASENIL]

E-CASECONS
case [| of {[[ > t2;x1 x> 13} —> 12 [ ]

case 1y 1] of {[] = 12:x1 1 x2 > 13} —> 13[t1;51] /13 x2]

[E-CASEEXN]
case 4 ¢ of {[] = t2:x1 X2 > 13} —> 4%

Figure 7. Operational semantics (f7 — #2)

[C-BooL]

— — — — = — —— [C-INT]
¢; .. k; Fbool : bool & e ¢; > e :: kj = EXN e, k; Hint:int& ee; >e i k; =EXN

e nkiFT:T&EDE Tk
e nkg F ] [T(E)] & ee;>e i kj =EXN,¢j T K;

[C-L1sT]

Fro:Ti&éive ik e nKj.ej K FT Ty &b peg Ky

e ki Ft1 > Ve k. (T1(61) > T2(62) &eei>e ik =EXN, e Kk

[C-ARR]

Figure 8. Type completion (AF 7 :T & £ A')



[T-VAR] [T-Con]

T-CRASH
Ix:T&EAFX:T&E FiAbcr: L &0 F;Al—éf,;J_r&{(}[ ]

T x:7 AT IF'iAeckbFt:T& fv(l,
L X 11&51, At (23 &Aéz [T-ABS] ek T&E e¢AV( §) [T-ANNABS]
AR Ax 7T & &1 :T1(81) > Ta(62) &0 I''AFAekt:Veuk7T&E

FiAF &) ->TE) &E TiAFL T &E FiARfG (Ve kT&E AbF& ik
T-A T-ANNA
F;AbFt ) T&E [ Pr] TiAF1 (6) Tl /e] & € [ NNAPP]

x:T&&EAF:T&E
MAFfixx:T&EL:T&E

[T-FIx]

I'; At :in ;A1 int ;Abt & I';Abt &
; t; int & & AT tr it & & [T-OP] 1:T1 &€& 2T &€& [T-SEQ]
I';Abt; &t :bool & & T Abtyseqtr 7o &E&

;A :bool&éE T AR :T&E AR :T&E
I'; Ak ift) thenrpelsers 1 T & €

[T-1F]

FAFn:T&éE FNAFn:[FE) &6
FAE  [L(9)] &0 [T-NiL] TiARt 1 [TE)] & & [T-Cons]

F;Al—tlt[?l(él)]&ég'/ ;AR :T&E F,xl2?1&i—'l,xzi[?l(él)]&f/;Al—@I?&f A}—Slgé
I';Abcasety of {[| > t2;x1 ixp > 13} 1 T&E

[T-CASE]

AT &E ART LT ARE LE
Akt :7T&E

[T-SUB]

Figure 9. Declarative type system (I'; At : T & §)

[L-VAR] [L-CoON]

= = [L-CRASH]
Nx: T&EAFXx > x:T&E IiAbcr—cr:1l: &9 FiAF st 1, &0

ATl AeguiigFE SBEXN INx: T &éA iRt =t T &é
T AR Ax it > A ki Ax 11 & 1.t Ve wk.11(61) > T2(52) & @

[L-ABS]

AT <TG /] A& <alh/a]l ARGk
F;A}—llc—>ll Ve Tk T1{E1) = TE) & E F;Al‘tz%[é:?z&gz
FiAF 0 (G) 1) TG /e) & EG /e U E
AFT)t AFEZEXN Mx:T&EAFt 1T &E AFT KT AFEKE
MAFfixx:tt>fixx:T&EL :T&E

[L-APP]

[L-Fix]

FiAbn >t int&g TAFn —tint&é FiAbn —>1:T1&& TiAbn >t D &b

— L-Op — L-SE
MA@ =1 &t :bool & £ U & [ I T AbF 1y seqiy — 1] seqth 1T & &1 U [ Ql

FiAb1—>1p:bool&é TAF > 1T &E AR > T3&E [L-IF]

I';Al-ifr) thenry else 13 — if 7] then ] else t} : T U T3 & &1 U U §3
TFAFti =t T1 & TiAbty =t [T{E] &
[L-NIL] 1 11 &g 2A( 5 [/1(51)] & [L-Cons]
FiAFT, = [, [Le(0)] & 0 FiAFf it o [f1 UT(E UE])] & &2

FiAbn s TiEN)&E TMAbn > & Nxp T &éLx: [TE)]&EAF > 15:T3&8E3 [L-CaSE]

Ty AFcasety of {[] > t2;x1 :: xp > 13} <> case 1] of {[] > 15;x7 = x2|—>t3} U3 &E UE UE

Figure 10. Syntax-directed type elaboration system (I'; At < ¢’ : T & §)



4. Exception types

The syntax of well-formed exception types is given in Figures
and[T2] We let e range over an infinite set of exception set variables
and { over a finite set of exception labels. An exception type T is
formed out of base types (booleans and integers), compound types
(lists), function types, and quantifiers (ranging over exception set
variableg’).

k € ExnKi ::= EXN (exception set)
| k1= K2 (exception set operator)
£,L€Exn =¢ (exception set variables)
| Ae:k.E (exception set abstraction)
| & & (exception set application)
| @ (empty exception set)
| {£} (singleton exception set)
| &1 U& (exception set union)

T € Exnly ::=Ve kT (exception set quantification)

| bool (boolean type)
| int (integer type)
| [2(6)] (list type)
|

T1{61) = 2(E2) (function type)

Figure 11. Exception types: syntax

For a list with exception type [T{£)]and effect £, the type T of the
elements in the list is annotated with an exception set expression &
of kind EXN. This expression gives a set of exceptions, from which
any one may be raised when an element of the list is forced. The
effect { gives a set of exceptions, from which any one may be raised
when a constructor forming the spine of the list is forced.

For a function with exception type 71 (1) — 72(£2) and ef-
fect ¢, the argument of type T; is annotated with an exception set
expression &1 that gives a set of exceptions that may be raised if the
argument is forced in the body of the function. The result of type
T, is annotated with an exception set expression £, that gives the
set of exceptions that may be raised when the result of the function
is forced. The effect ¢ gives the set of exceptions from which any
one may be raised when the function closure is forced.

Example 2. The identity function

id : Ve.bool{e) — bool(e) & @
id = Ax.x

propagates any exceptional value passed to it as an argument to the
result unchanged. As the identity function is constructed by a literal
A-abstraction, no exception is raised when the resulting closure is
forced, hence the empty effect.

Example 3. The exceptional function value
4 Eoolsbool © Ve-bo0l(e) — bool(d) & {E}

raises an exception when its closure is forced—as happens when it
is applied to an argument, for example. As this function can never
produce a result, it certainly cannot produce an exceptional value.
So the result type is annotated with an empty exception set.

2 To avoid complicating the presentation we do not allow quantification over
type variables, i.e. polymorphism in the underlying type system.

A, ek =T wif

L= kPTWI W Ro
A Ve :: kT wif [ RALL]

— [W-BOOL] —— [W-I

AF bool wit - L A aewe N

AETwif AFE&:EXN
A b [T(§)] wif

[W-LIsT]

ATy wWif AFE DEXNAFRT, wif AR &  EXN
AET(61) - T2 (62) Wi

[W-ARR]

Figure 12. Exception types: well-formedness (A - T wif)

The exception set expressions £ and their kinds « are an instance
of the AY-calculus, where exception set expressions are terms and
kinds are the types. As the constants we takes the set of exception
labels present in the program. Two exception set expressions are
considered equivalent if they are convertible as AY-terms, which is
to say that they reduce to the same normal form.

The type system resembles System F, (Girard|1972) in that we
have quantification, abstraction and application at the type level. A
key difference is that abstraction and application are restricted to
the effects (Exn) and cannot be used in the types (ExnTy) directly.
Quantification, on the other hand, is restricted to the types, where it
ranges over effects, and is not allowed to appear in the effect itself.
The types thus remain predicative.

4.1 Subtyping

Exception types are endowed with the usual subtyping relation
for type-and-effect systems (Figure [T3). The function type is con-
travariant in its first argument for both the type and the effect.
The subeffecting relation A F &1 < &; is the subsumption relation
I' 11 < tp from the AY-calculus (Definition .

Ae kT <7
usw [S-FORALL]
A Ve k1 <Ve:kT

AFTI<T AR LT
st 2725 g TRANS]
AT <13

—— [S-REFL
ArF<! ]

AFT<T AFE<E

A [TEI<S [TEN)]
AFTISTI ARE<§ AR ST, AR <E
AET(E1) = T2(E2) < T {E]) — Th(E)

[S-LIsT]

[S-ARR]

Figure 13. Exception types: subtyping relation (A - 71 < 72)

4.2 Conservative types

Any program that is typeable in the underlying type system should
also have an exception type: the exception type system is a conser-
vative extension of the underlying type system. Like type systems
for strictness or control flow analysis—and unlike type systems for
information flow security or dimensional analysis—we do not want
to reject any program that is well-typed in the underlying type sys-
tem, but merely provide more insight into its behavior.

If we furthermore want the type system to be modular—
allowing type checking and inference to work on individual mod-
ules instead of whole programs—we cannot and need not make
any assumptions about the exception types of the arguments that



are applied to any function, as the function may be called from
outside the module with an argument that also comes from outside
the module and which we cannot know anything about.

For base and compound types that stand in an argument position
their effect and any nested annotations must thus be able to be
instantiated to any arbitrary exception set expression. They must
therefore be exception set variables that have been universally
quantified.

These observations lead to the following definition of conserva-
tive exception typesﬂ

Definition 5. An exception set expression £ is simple if it is a single
exception set variable e, an exception set expression is a pattern if
it fits Definition[d] and any exception set expression is conservative.

We lift these three judgments to exception types T in the follow-
ing manner:

e If T = bool or T = int, then T is simple, a pattern and
conservative.

e If T = [7/(£)], then T is simple, a pattern or conservative if 7’
and £ are respectively simple, patterns or conservative.

o If T = Ve; = k;.71{€1) — T2(&2), then T is both simple and
a pattern if 71 and &; are simple and T and & are patterns;
and T is conservative if 7 and &; are simple and 7, and &, are
conservative.

Example 4. The function fail can be applied to any list, but may
produce an additional exceptional value E, because it is partial:

tail : Ve e3. [bool(e;)](e2) — [bool(e;)](ex U{E}) & 0

The type and effect of the argument are simple, while the type
and effect of the result are conservative, making the whole type
conservative.

The conjunction operator A can be applied to any two booleans,
and—operators being strict in both arguments—will propagate any
exceptional values:

A :Vey.bool{e;) — (Vey.bool{e;) — bool(e; U ey)) () & @
Here both arguments have simple types and effects.

For function types that stand in an argument position (the func-
tional parameters of a higher-order function) the situation is slightly
more complicated. For the argument of this function we can in-
ductively assume that this is a universally quantified exception set
variable. The result of this function, however, is some exception
set expression that depends on the exception set variables that were
quantified over in the argument. We cannot simply introduce a new
exception set variable here, but must introduce a Skolem function
that depends on each of the universally quantified exception set
variables.

Example 5. Consider the higher-order function apply that applies
its first argument to the second.

apply : Vep :: EXN.Ves :: EXN = EXN.
(Ve :: EXN.bool{e;) — bool{e3 e})){es) —
(Yey4 :: EXN.bool{e4) — bool{e; U e3 e4)) (D)
& 9@
apply = Af Ax.f x

The first (functional) argument of apply has exception type
Ve; :: EXN.bool(e;) — bool{e; e;) and effect e;. It can be
instantiated with any function that accepts an argument annotated
with any exception set effect, and produces a result annotated
with some exception set effect depending on the exception set
3|Holdermans and Hage| (2010) call pattern types fully parametric and
conservative types fully flexible.

effect of the argument; the function closure itself may raise any
exception. All functions of underlying type bool — bool satisty
these constraints, so we are not really constrained at all.

As e; has been quantified over, only the exception set opera-
tor e3 and the effect e, are left free. We quantify over them outside
the outer function space constructor, allowing them to appear in the
annotation ey U e3 e4 on the result. The exception set operator e3 is
now applied to eq4, as the term-level application f x instantiates the
quantified exception set variable e to e4.

(Note that the exception annotation e; on the closure—unlike
the exception set operator e3 on the result—does not depend on the
exception variable e, the annotation on the argument. As a closure
is already a value, it being exceptional or not can never depend on
the argument it is later applied to.)

Example 6. The semantics of terms in the source language is
not invariant under n-conversion in the presence of exceptional
values—thus neither are exception types. The term

~ /PN
Ax: bool.éEO()l_>l)()()l x: Ve :: EXN.bool{e) — bool({E})

does not have the same exception type as the n-equivalent term
E RV oy B o
4 bool—bool : Ve :: EXN.bool{e) —> bool(?)
They cannot be distinguished by applying them to an argument

(Ax: bOOI'éEOOI—)bool x) true : bool & {E}

4 ol bool true : bool & {E}

but they can be distinguished by forcing the closure

(Ax : DOOL4E 1 poor ¥) S€q true : bool & 0
éEool_)bool seq true : bool & {E}

4.3 Exception type completion

Given an underlying type 7 we can compute the most general ex-
ception type T that erases to t. This is done using the type com-
pletion system in Figure [§] that defines a type completion rela-
tion Ak 7:T&E> A Ajudgmente; Tk FTiT&E>E K
is read: if the kinded exception set variables e; :: k; are in scope,
then the underlying type  is completed to the exception type T and
effect &, while introducing the kinded free exception set variables
ej T Kkj. A completed exception type is always a pattern type.

Example 7. The higher-order underlying type
[bool — bool] — [bool] — [bool]
is completed to the pattern type
Vep it EXN.Ve) it EXN.Ve3 :: EXN = EXN.

/

e
[Ver :: EXN.bool(e1) —> bool(es e1)](e2) —

. eg e el e3
(Ves :: EXN.Ves :: EXN.[bool(e%)]{es) — 2

[bool(e] e2 €} e3 e5 e5)](e7 e2 €5 e3 es e5))
with effect e4, and while introducing the free variables
e4 1 EXN,
e¢ :: EXN = EXN = (EXN = EXN) = EXN,
e7,€} 1 EXN = EXN = (EXN = EXN) = EXN = EXN = EXN

Note that the types of both arguments are simple types with
simple exception annotations. However, as the first argument is a
functional argument, the result type of that function is still a pattern.

The exception annotation on the right-most function-space con-
structor is a pattern that depends on ez, e’z and e3. While we pre-
viously noted that the annotation on a function-space constructor



cannot depend on the annotation belonging to the argument of that
function, it is possible for a set of exceptional values that the clo-
sure may come to depend on any previous arguments of the whole
function. This is more concretely demonstrated by the following
function:

~ /NN ~
f i Veq, ez :: EXN.bool{e;) — bool(es) , bool(e;)
f = Ax :bool.x seq Ay : bool.y

Whether the closure that is returned after partially applying f
to one argument is an exceptional value or not, depends on that
argument x being exceptional or not.

4.4 Least exception types

Besides completing an underlying type t to a most general excep-
tion type, we also want to compute a least exception type L ;. Given
an effect kind k; = EXN, denote by QK Srxy the effect Ae; 7.0,
We can construct a least exception type by first completing the type
T to the most general exception type, and then substituting @, for
all free freshly introduced exception set variables e; = k.

Example 8. The least exception type

J-[hool—)bool]—>[Imol]—>[b001]
is the conservative type
Veo :: EXN.Ve) it EXN.Ve3 1 EXN = EXN.

/

e
[Veq :: EXN.bool{e1) —> bool(es e1)]{e2) —

2 [bool(9)](2))

(Yes :: EXN.Ves :: EXN.[bool{e%)](es)

4.5 Exception typing and elaboration

In Figure ] we give a declarative system for deriving exception
typing judgments I'; A : 7T & &.

These judgments work on an explicitly typed language and for
this purpose we extend the terms of the source language with two
new term-level constructs: effect abstraction and effect application.

Terms
t € ExnTm := ..
| Ax:T&Et (term abstraction)
| fixx:T&Et (general recursion)
|
| Ae:k.t (effect abstraction)
| (&) (effect application)

Figure 14. Source language: extended syntax

As the source language is not explicitly typed, we also give a
type elaboration system that given an implicitly typed term in the
source language produces an explicitly typed term (Figure [T0).

The auxiliary judgment A -7 | 7 holds for any exception type
T that erases to the underlying type 7. The type 71 U T is an
exception type suchthat A7y < T U Tz and A F T <71 U T

4.6 Presentation of exception types

For most-general conservative exception types the location of the
quantifiers is uniquely determined, we can therefore omit them
from the type without introducing ambiguity. For example, the
exception type of the map function from the introduction may be
presented as:

(@(er) 2> Blea e1)) — [lea)](es) — [Blea ea U es)]fes)

5. Type inference
A type inference algorithm is given in Figure[[3]

R : TyEnv x KiEnv x Tm — ExnTm x ExnTy x Exn

R(I; A; x) =x:I(x)
R Asce) =cr: 1l &0
R(M:A 4% =41, &)
R A Ax s tt) =
letrl &eve; ik =C(0;7)
&b =R(Mx:7Ty &e; A ki3 t)
in Ae,.K,Ax T1 &e.t' Ve ik .T1{e) > Ta{62) & 0
R(I; Azt t2) =
lets] : 7] & & =R(I; A1)
&b =R(I; A1)
%\é(e/ﬁ —>?/<§:)‘>et Tk =Z(11)
6 = [€2H52]0M(0§%;?2)

in 1] (0e;) 15 |67 4 & 168 U&1]|a
R(IM A Mixx :t.t) =
doi;To & &g« 01, &0
repeat 1/ | Ty &y < R(Nx: T & &5 Ast)
i «~—i+1
until 7; & & =71 & &
return fix x 1 ; & &.1] 1 T & &
R(I; Aty seq tp) =
letr{ : Ty & & =R Any)
) &b =R An)
in 1] seqt} T & [[E1 Uér]la
R4t @) =
letr{ it & & = R(I"; Aty)
jrint & £ = R(I'; Astp)
in Zi @lé :bool & [[§1 U &2]la
R(I"; A;if t1 then 1, else t3) =
let 7] : bool & £; = R(I"; A:1y)

~

~

Ié:?z&gz =R(I; A1)
lé:?g, &53 =R(F;A;t3)
in if[i then lé else [é N UT3]ja &|E1UE UEs]A
R 45 007) = [l;: [Le(D)] &0
R Aty i tp) =
letr{ : 7Ty & & =R(; A1)

th: [T2(Eh)] & &2 = R(I"; Aitp)
in ¢ o) [[@UT)(E UE)]Ia & &2
R(I; A;case tq of {[] — t2;x1 2 X2 > 13}) =
let t{ : [fl:\] (Si)] & &1 =R A t)

r’ =F,x1:?1&§i,xz:[/f\1(§i)]&é§1
Ié T &b =R A1)
113 &E =R A 13)

in case tpof {[] = th;xy i xp >t}
[2UT3]a & [[E1 UE2UE3]A

Figure 15. Type inference algorithm (R)

5.1 Polymorphic abstraction

The cases for abstraction and application are handled similarly to
the corresponding cases in[Holdermans and Hage| (2010).



In the case of abstractions, we first complete the type of the
bound variable to a most general exception type using the proce-
dure C : KiEnv x Ty — ExnTy x Exn x KiEnv. This proce-
dure is a functional interpretation of the type completion relation
AbFtT:T&E> A, where the first two arguments A and T are
taken to be the domain and the last three arguments T, £ and A’ are
taken to be the range. Next, we infer the exception type of the body
of the abstraction under the assumption that the bound variable has
the just completed exception type-and-effect T; & ej. Finally we
quantify over all free variables e; it k; introduced by completion.

In the case of applications, we instantiate (Z) all quantified vari-
ables of the exception type of #; with fresh exception variables.
Next we use the auxiliary procedure M to find a matching sub-
stitution between the exception types of the formal and the actual
parameters.

M : KiEnv x ExnTy x ExnTy — Subst

M(A;bool; bool) =0
M(A;int; int) =0

M(A; [T(e’ &)]; [T(E)

= [/ > Aej 2 Ag; .E] o M(A:T:T)
M(A;Ti{e) — Tyle' &) Ti{e) — T2(E))

= [/ > Aej 2 Ag; .E] 0 M(A; T T2)
M(A;Ve kT Ye:kT) = M(A,e::k;T;7T)

Figure 16. Exception type matching (M)

The interesting cases of exception type matching are the cases
for list and function types, where we perform pattern unification
on the exception annotations. The produced substitution 6 covers
all variables e; :: k; freshly introduced by the instantiation proce-
dure Z. Finally, we apply the substitution  to the exception type 7’
and effect &’ of the result of #1.

5.2 Polymorphic recursion

The fix-construct abstracts over a variable that is of an exception
polymorphic type. The algorithm handles this case with a Kleene—
Mycroft iteration—which we conjecture to always converge

Example 9 (Dussart—Henglein—-Mossin). Consider the term

f : bool — bool — bool
f = fixf’ : bool — bool — bool.
Ax : bool.Ay : bool. if x then true else " y x

Algorithm R infers the exception type and elaborated term

~ ] ~ [/
f @ Vej.bool{e;) — Ve.bool{e;) — bool({e; U e;)

~ ] ~ /NN
f=fixf :Vej.bool{e;) — VYe;.bool{e;) — bool{e; U e3).
Aeq :: EXN.Ax : bool & e1.Ae; :: EXN.Ay : bool & e5.
if x then true else f/ (e2) y (e1) x

Let us convince ourselves that the elaborated term is type-correct.
x : bool & ey
true : bool & ¢
flez) y {e1) x : bool & ez U e
Therefore,
if x then true else f {e3) y (e1) x : boolLibool & e; UGUe; Uey

4|Holdermans and Hage| (2010) note that A-bound polymorpism gives us
fix-bound polymorphism “for free.” We believe this statement to be overly
optimistic. While the highly polymorphic nature of these types do effec-
tively force us to also handle polymorphic recursion, the inference step is
arguably as complicated as the case for polymorphic abstraction.

By commutativity and idempotence of the union operator and the
empty set being the unit, this reduces to

if x then true else f(e3) y {e1) x : bool & e1 U e;

Type checking is easier than type inference, however. To infer
the type of the recursive definition f we have to “guess” a type for
it. How do we guess this type? We first try the least exception type

L bool—bool—bool:
~ [ ~ /N
Vei.bool(e;) — Ver.bool(e;) — bool(D)

If we continue inferring the type with this guess, then we end up
with a larger type than the guess:

~ ? ~ /NN
Vej.bool{e;) — Vey.bool(e;) — bool{e;)

We try inferring the type again, but now start with this type as our
guess instead of the least type. We end up with an even larger type:

~ ] ~ /N
Vej.bool{e;) — Ver.bool{e;) — bool{e; U e;)

Finally, if we take this type as our guess, we obtain the same type
and conclude we have reached a fixed point.

5.3 Least upper bounds

The remaining cases of the algorithm are all relatively straightfor-
ward. Several of the cases (if-then-else, case-of and the list-consing
constructor) require the least upper bound of two exception types
to be computed. The fact that exception types and annotations oc-
curring in argument positions of function types are always simple
makes this easy, as they must be equal up to «-renaming (Holder-
mans and Hage|2010). This allows us to treat those arguments in-
variantly instead of contravariantly, obviating the need to also com-
pute greatest lower bounds of exception types and annotations.

U : ExnTy x ExnTy — ExnTy

bool U bool = bool

int L int = int

[7(§)] u [7'("] =[@uT)(EUE)]

Ti{e) > T2(8) UTi{e) > T(E) =Ti{e) > @ UTYEUE)

Ve : kT UVe: kT =Ve:k.(TUT)

Figure 17. Exception types: least upper bounds (LI)

5.4 Complexity

There are three aspects that affect the run-time complexity of the
algorithm: the complexity of the underlying type system, reduction
of the effects, and the fixpoint-iteration in the inference step of the
fix-construct. We have a simply typed underlying type system, but
if we would extend this to full Hindley—Milner, then it is possible
for types to become exponentially larger than terms (Mairson|1990;
Kfoury et al.|1990a)). The effects are AY-terms, which contains the
simply typed A-calculus as a special case. Reduction of terms in
the simply typed A-calculus is non-elementary recursive (Statman
1979). It is also easy to find an artificial family of terms that
requires at least a linear number of iterations to converge to a
fixpoint. For these reasons we do not believe the algorithm to have
an attractive theoretical bound on time-complexity.

Anecdotal evidence suggests that the practical time-complexity
is acceptable, however. Hindley—Milner has almost linear complex-
ity in non-pathological cases. Types do not grow larger than the
terms. The same seems to hold for the effects. Reduction of ef-
fects takes a small number of steps, as does the convergence of the
fixpoint-iteration. In cases where the exception annotation does be-
come too large, a widening rule could be applied.



6. Related work
6.1 Higher-ranked polymorphism in type-and-effect systems

Effect polymorphism For plain type systems, Hindley—Milner’s
let-bound polymorphism generally provides a good compromise
between expressiveness of the type system and complexity of the
inference algorithm (Hindley| 1969} [Milner|1978; Damas and Mil-
ner| |1982). Type systems were extended with effects—including
let-bound effect-polymorphism—by Lucassen and Gifford| (1988));
Jouvelot and Gifford|(1991); and Talpin and Jouvelot (1992,{1994).
In type-and-effect systems it has long been recognized that fix-
bound polymorphism (polymorphic recursion) in the effects is of-
ten beneficial or even necessary for achieving precise analysis re-
sults. For example, in type-and-effect systems for regions (Tofte
and Talpin||1994), dimensions (Kennedy| 1994; [Rittri||1994, |1995)),
binding times (Dussart et al.||1995), and exceptions (Glynn et al.
2002; Koot and Hage |2015)).

Inferring principal types in a type system with polymorphic re-
cursion is equivalent to solving the undecidable semi-unification
problem (Mycroft| [1984; Kfoury et al.||1990b, |1993 Henglein
1993). When restricted to polymorphic recursion in the effects,
the problem often becomes decidable again. In [Tofte and Talpin
(1994) this is a conjecture based on empirical observation. Rit-
tri| (1995) gives a semi-unification procedure based on the general
semi-unification semi-algorithm by |Baaz| (1993) and proves it ter-
minates in the special case of semi-unification in Abelian groups.
Dussart et al.|(1995) use a constraint-based algorithm. They show
that all variables that do not occur free in the context or type can
be eliminated from the constraint set by a constraint reduction step
during each Kleene—-Mycroft iteration. As at most n2 subeffecting
constraints can be formed over n free variables, the whole proce-
dure must terminate. By not restarting the Kleene—-Mycroft iteration
from bottom, their algorithm runs in polynomial time—even in the
presence of nested fixpoints.

The extension to polymorphic effect-abstraction (A-bound,
higher-ranked effect polymorphism) remained less well-studied,
possibly because it is of limited use without the simultaneous intro-
duction of effect operators—in contrast to the situation of higher-
ranked polymorphism in plain type systems.

Effect operators |Kennedy|(1996a) presents a type system that en-
sures the dimensional consistency of an ML-like language extended
with units of measure (MLyg). This language has predicative prenex
dimension polymorphism. Kennedy gives an Algorithm WW-like
type inference procedure that uses equational unification to deal
with the Abelian group (AG) structure of dimension expressions.
Also described are two explicitly typed variants of the language:
a System F-like language with higher-ranked dimension polymor-
phism (Ag), and a System F,-like language that extends Ag with
dimension operators (Ag,,). Kennedy| notes that this language can
type strictly more programs than the language without dimension
operators:

twice : VF :: DIM = DIM.
(Vd :: piM.real(d) — real(F d)) —
(Vd :: piM.real{d) — real(F (F d)))
twice = AF :: DIM = DIM.
Af : (Vd :: DIM.real{d) — real(F d)).
Ad :: DIM.Ax : real{d).f (F d) (f (d) x)
square : Vd :: DIM.real{d) — real(d?)
square = Ad :: DIM.Ax : real{d).x?
fourth : Vd :: DiM.real{d) — real{d*)
fourth = twice {Ad :: DIM.d?) square
Without dimension operators the type of the higher-order func-
tion twice would not allow the application of the function square

at the two distinct types Vd :: DIM.real(d) — real{d?) and
Vd :: DIM.real(d?) — real(d*) when invoked from the function
fourth.

The language Ag,, bears a striking resemblance to the language
in Figure the empty and singleton exception sets constants,
and the exception set union operator have been replaced with a
unit dimension, and dimension product and inverse operators—
as dimensions have an AG structure, whereas exception sets have
an ACI1 structure; in the dimension type system the annotation
is placed only on the real number base type instead of on the
compound types, and there is no effect. No type inference algorithm
is given for this language, however.

Faxén| (1997) presents a type system for flow analysis that
uses constrained type schemes in the style of |Aiken and Wimmers
(1993), and has A-bound polymorphism (but no type operators) in
the style of System F. To make the inference algorithm terminate
for recursive programs the size of the name supply needs to be
bounded, leading to imprecision. |Smith and Wang| (2000) present
a similar framework, but one that can be instantiated with variants
of either k-CFA (Shivers|[1991) or CPA (Agesen||[1995) to ensure
termination.

Holdermans and Hage|(2010) design a System F,-like type sys-
tem for flow analysis for a strict language that has both polymor-
phic abstraction and effect operators. Our type inference algorithm
builds on their techniques. A key difference is that they work with
a constraint-based type system and a constraint solver, while we re-
place these with reduction of terms in an algebraic A-calculus. This
difference expresses itself particularly in how the case of (poly-
morphic) recursion is handled. We believe our approach will scale
more easily to analyses that are either not conservative extensions
of the underlying type system, or require more expressive effects
(see Section[7)).

6.2 AY-calculus

Tannen|(1988),(Okada|(1989), and | Tannen and Gallier|(1991)) prove
that if a simply typed A-calculus is extended with a many-sorted
algebraic rewrite system R (by introducing the symbols of the al-
gebraic theory as higher-order constants in the A-calculus), then the
combined rewrite system 87R is confluent and strongly normaliz-
ing if R is confluent and strongly normalizing.

Révész (1992) introduced an untyped A-calculus with applica-
tive lists. A model is given by |Durfee|(1997). This calculus satisfies
the equations

(t1yntn) t =1t it £ (1)
Ax.(t1,..ty) = (Ax.t1,..., Ax.ty) (y2)

similar to our typed AY-calculus.

6.3 Exception analyses

Several exception analyses have been described in the literature;
these primarily target the detection of uncaught exceptions in ML.
The exception analysis by |Yi (1994) is based on abstract interpre-
tation. (Guzman and Suarez (1994) and |[Fahndrich et al.| (1998) de-
scribe type-based exception analyses. |[Leroy and Pessaux| (2000)
presents a row-based type system for exception analysis that con-
tains a data-flow analysis component targeted towards tracking
value-carrying exceptions.

Glynn et al.| (2002) developed the first exception analysis for
a non-strict language; a type-based analysis using Boolean con-
straints. |[Koot and Hage| (2015) present a constraint-based type
system for exception analysis of a non-strict language, where the
exception-flow could depend on the data-flow using conditional
constraints. This increases the accuracy in the presence of excep-
tions raised by pattern-matching failures.



7. Further research

Can we infer types for Kennedy’s higher-ranked Ag,? One
problem that immediately presents itself is that this type system
is not a conservative extension of the underlying type system: pro-
grams can be rejected because they, while being type correct in
the underlying type system, may still be dimensionally inconsis-
tent. Unlike the system in this paper, the annotations on function
arguments will no longer be of the simple form (patterns) required
for the straightforward matching step in the type inference algo-
rithm. Instead, we suspect we have to solve a higher-order equa-
tional (pre)unification problem, which is only semi-decidable. Sny-
der| (1990), Nipkow and Qian|(1991) and|Qian and Wang|(1996)) do
give us semi-algorithms for solving such problems.

Can we further improve the precision of exception types? Koot
and Hage|(2015)) argue that an accurate exception typing system for
non-strict languages should also take the data flow of the program
into account, as many exceptions that can be raised in non-strict
languages are caused by incomplete case-analyses during pattern-
matching. The canonical example is the risers function—which
splits a list into monotonically increasing subsegments; for exam-
ple, risers [1,3,5,1,2] evaluates to [[1, 3, 5], [1, 2]]—by Mitchell
and Runciman| (2008)):

risers : [int] — [[int]]
risers [] =]
risers [x] = [[x]]
risers (x1 =i xp i1 x§) =
if x; < xp then (x1 1 y) = yselse [x1] =2 (v 2 ys)
where (v :: ys) = risers (x :: xs)

The inference algorithm in Figure[I5]assigns risers the type

Ve| :: EXN.Vep it EXN.
[int(ez)](e1) — [[int(e2)](D)](e1 Uer U{E}) & @

where E is the label of the exception raised when the pattern-match
in the where-clause failsE] However, the pattern-match happens on
the result of the recursive call risers (x :: xs). When risers is given
a non-empty list (such as x; :: xs) as an argument, it always returns
a non-empty list as its result. The pattern-match can thus never fail,
and the exception labelled E can thus never be raised.

Koot and Hage| demonstrate how this exception can be elided
by having the exception flow depend on the data flow. The AY-
calculus terms that form the effect annotations cannot express this
dependence, however. Koot and Hage| use a slightly ad hoc form
of conditional constraints to model this dependence. We believe
that extending a A-calculus with an equational theory of Boolean
rings may form the basis of a more principled approach. Boolean
rings have already been successfully used to design type systems
for strictness analysis (Wright|1991)), records (Kennedy|1996b) and
exception tracking (Benton and Buchlovsky|2007).

Metatheory We have not yet worked out the metatheory of the
type system presented in this paper. Of particular interest are the
(syntactic) soundness, completeness and totality of the inference
step for recursive definitions. We expect that soundness and com-
pleteness can be shown by a similar argument as in Mycroft| (1984)
and Dussart et al.| (1995).

We conjectured the totality of our inference algorithm. We have
a good reason to do so: we only expect the fixpoint iteration to
diverge if no fixpoint exists—that is to say, the program is type
incorrect. Assuming the program is well-typed in the underlying
type system, there are no type incorrect programs in our exception
typing system, however.

3 This exception is left implicit in the above program, but becomes explicit
when the code is desugared into our core language.

To show the fixpoint iteration is guaranteed to terminate in their
binding-time analysis, |[Dussart et al.| (1995) note that only a finite
number of type constraints and therefore constrained type schemes
can be formed over a finite number of variables (after constraints
have been simplified). As it is still possible to form an infinite
number of AY-normal forms over a finite number of variables, such
an argument is not going to work directly.

8. Conclusion

We show that it is feasible to extend non-strict higher-order lan-
guages with exception-annotated types, as is already done in some
strict first-order languages. We argue that higher-ranked exception
polymorphic types with exception set operators a la System Fy, are
not only more accurate, but are also more readable when presented
to the programmer vis-a-vis constrained type schemes: the excep-
tion terms in the annotations more closely mirror what is happening
at the term level than constraint sets do.
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