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Abstract
Most statically typed functional programming languages allow pro-
grammers to write partial functions: functions that are not defined
on all the elements of their domain as specified by their type. Ap-
plying a partial function to a value on which it is not defined will
raise a run-time exception, thus in practice well-typed programs
can and do still go wrong.

To warn programmers about such errors, contemporary compil-
ers for functional languages employ a local and purely syntactic
analysis to detect partial case-expressions—those that do not cover
all possible patterns of constructors. As programs often maintain
invariants on their data, restricting the potential values of the scru-
tinee to a subtype of its given or inferred type, many of these in-
complete case-expressions are harmless. Such an analysis does not
account for these invariants and will thus report many false posi-
tives, overwhelming the programmer.

We develop a constraint-based type system that detects harmful
sources of partiality and prove it correct with respect to an impre-
cise exception semantics. The analysis accurately tracks the flow of
both exceptions—the manifestation of partiality gone wrong—and
ordinary data through the program, as well as the dependencies be-
tween them. The latter is crucial for usable precision, but has been
omitted from previously published exception analyses.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Languages, Theory, Verification

Keywords type-based program analysis, exception analysis, im-
precise exceptions, pattern-matching
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1. Introduction
Many modern programming languages come equipped with a type
system. Type systems attempt to prevent bad behaviour at run-time
by rejecting, at compile-time, programs that may cause such be-
haviour. As predicting the dynamic behaviour of an arbitrary pro-
gram is undecidable, type systems—or at least those in languages
relying on type inference—will always have to either reject some
programs that can never cause bad behaviour, or accept some that
do.

A major source of trouble are partial functions—functions that
are not defined on all the elements of their domain, usually be-
cause they cannot be given any sensible definition on those ele-
ments. Canonical examples include the division operator, which is
undefined when its right-hand argument is zero, and the head func-
tion (extracting the first element from a list) which is undefined on
the empty list. Outright rejecting such functions does not seem like
a reasonable course of action, so we are left only with the possi-
bility of accepting them as well-typed at compile-time and having
them raise an exception at run-time, when invoked on an element
of their domain on which they were left undefined.

Still, we would like to warn the programmer when we accept
a program as correctly typed that may potentially crash due to
an exception at run-time. Most compilers for functional languages
will already emit a warning when a function is defined by a non-
exhaustive pattern-match, listing the missing patterns. These warn-
ings are generated by a very local and syntactic analysis, however,
and generate many false positives, distracting the programmer. For
example, they will complain that the head function is missing a
clause for the empty list, even if head is only ever invoked on a
syntactically non-empty list, or not at all. Worse still are spurious
warnings for non-escaping let-bound functions, for which one can
no longer argue the warning is useful, as the function cannot be
called from a different context at a future time.

Unlike other exception analyses that have appeared in the
literature—which primarily attempt to track uncaught user-thrown
or environment-induced exceptions, such as those that could be en-
countered when reading invalid data from disk—we are first and
foremost concerned with accurately tracking the exceptions raised
by failed pattern-matches. Therefore, our analysis might equally
well be called a pattern-match analysis, although it is certainly not
strictly limited to one as such. Getting results of usable accuracy—
eliminating as many false positives as possible—requires carefully
keeping track of the data-flow through the program. This addition-
ally improves the accuracy of reporting potential exceptions not
related to pattern matching and opens the way for employing the
analysis to perform static contract checking.



1.1 Contributions
Our contributions include the following:

• We develop a type-driven—and thus modular—exception anal-
ysis that tracks data flow in order to give accurate warnings
about exceptions raised due to pattern-match failures.
• Accuracy is achieved through the simultaneous use of subtyp-

ing (modelling data flow), conditional constraints (modelling
control flow), parametric polyvariance (to achieve context-
sensitivity) and polyvariant recursion (to avoid poisoning).
• The analysis works for call-by-name languages with an im-

precise exception semantics. Such a semantics is necessary to
justify several program transformations applied by optimizing
compilers for call-by-name languages with distinguishable ex-
ceptions
• We give an operational semantics for imprecise exceptions and

prove the analysis sound with respect to this semantics.
• The analysis presented in this paper is implemented as a proto-

type and, in addition to a pen-and-paper proof, the metatheory
has been mostly mechanized in Coq. Both are available from:
http://www.staff.science.uu.nl/~0422819/tbea/.

2. Motivation
Many algorithms maintain invariants on the data structures they use
that cannot easily be encoded into their types. These invariants of-
ten ensure that certain incomplete case-expressions are guaranteed
not to cause a pattern-match failure.

2.1 risers
An example of such an algorithm is the risers function from
Mitchell and Runciman (2008), which computes monotonically
increasing subsegments of a list:

risers : Ord α⇒ [α]→ [[α]]
risers [] = []
risers [x ] = [[x ]]
risers (x1 :: x2 :: xs) =

if x1 6 x2 then (x1 :: y) :: ys else [x1] :: (y :: ys)
where (y :: ys) = risers (x2 :: xs)

For example:

risers [1, 3, 5, 1, 2] −→∗ [[1, 3, 5] , [1, 2]].
The irrefutable pattern in the where-clause in the third alterna-

tive of risers expects the recursive call to return a non-empty list.
A naive analysis might raise a warning here. If we look a bit longer
at the program, however, we see that we also pass the recursive call
to risers a non-empty list. This means we will end up in either the
second or third alternative inside the recursive call. Both the sec-
ond alternative and both branches of the if-expression in the third
alternative produce a non-empty list, satisfying the assumption we
made earlier and allowing us to conclude that this function is total
and will never raise a pattern-match failure exception. (Raising or
propagating an exception because we pattern-match on exceptional
values present in the input is still possible, though.)

2.2 bitstring
Another example, from Freeman and Pfenning (1991), comprises
a collection of mathematical operations working on bitstrings: in-
tegers encoded as lists of the binary digits 0 and 1, with the least
significant bit first. We model bitstrings as the type

type Bitstring = [Z]

This type is too lenient in that it does not restrict the elements of the
lists to the digits 0 and 1. We can however maintain this property
as an implicit invariant.

If we now define an addition operation on bitstrings:

add : Bitstring → Bitstring → Bitstring
add [] y = y
add x [] = x
add (0 :: x ) (0 :: y) = 0 :: add x y
add (0 :: x ) (1 :: y) = 1 :: add x y
add (1 :: x ) (0 :: y) = 1 :: add x y
add (1 :: x ) (1 :: y) = 0 :: add (add [1] x ) y

we see that the patterns in add are far from complete. However, if
only passed arguments that satisfy the invariant it will neither crash
due to a pattern-match failure, nor invalidate the invariant.

2.3 desugar
Compilers work with large and complex data types to represent the
abstract syntax tree. These data structures must be able to repre-
sent all syntactic constructs the parser is able to recognize. This
results in an abstract syntax tree that is unnecessarily complex, and
too cumbersome for the later stages of the compiler—such as the
optimizer—to work with. This problem is resolved by desugaring
the original abstract syntax tree into a simpler—but semantically
equivalent—abstract syntax tree that does not use all of the con-
structors available in the original abstract syntax tree.

The compiler writer now has a choice between two different op-
tions: either write a desugaring stage desugar : ComplexAST →
SimpleAST—duplicating most of the data type representing and
functions operating on the abstract syntax tree—or take the easy
route desugar : AST → AST and assume certain constructors
will no longer be present in the abstract syntax tree at stages of the
compiler executed after the desugaring phase. The former has all
the usual downsides of code duplication—such as having to manu-
ally keep multiple data types and the functions operating on them
synchronized—while the latter forgoes many of the advantages of
strong typing and type safety: if the compiler pipeline is restruc-
tured and one of the stages that was originally assumed to run only
after desugaring suddenly runs before that point the error might
only be detected at run-time by a pattern-match failure. A pattern-
match analysis should be able to detect such errors statically.

3. Overview
We formulate our analysis in terms of a constraint-based type and
effect system (Talpin and Jouvelot 1994; Nielson et al. 1997; Abadi
et al. 1999).

3.1 Data flow
How would we capture the informal reasoning we used in Sec-
tion 2.1 to convince ourselves that risers does not cause a pattern-
match failure using a type system? A reasonable first approach
would be to annotate all list types with the kind of list it can be: N if
it must be an empty list, a list that necessarily has a nil-constructor
at the head of its spine; C if it must be a non-empty list having
a cons-constructor at its head; N t C if it can be either. We can
then assign to each of the three individual branches of risers the
following types:

risers1 : ∀α.Ord α⇒ [α]N → [[α]NtC]N

risers2, risers3 : ∀α.Ord α⇒ [α]C → [[α]NtC]C

From the three individual branches we may infer:

risers : ∀α.Ord α⇒ [α]NtC → [[α]NtC]NtC

http://www.staff.science.uu.nl/~0422819/tbea/


Assigning this type to risers will unfortunately still let us be-
lieve that a pattern-match failure may occur in the irrefutable pat-
tern in the where-clause, as this type tells us any invocation of
risers—including the recursive call in the where-clause—may
evaluate to an empty list. The problem is that risers1—the branch
that can never be reached from the call in the where-clause—is poi-
soning the overall result. Polyvariance (or property polymorphism)
can rescue us from this precarious situation, however. We can in-
stead assign to each of the branches, and thereby the overall result,
the type:

risers : ∀αβ.Ord α⇒ [α]β → [[α]NtC]β

In the recursive call to risers we know the argument passed is a
non-empty list, so we can instantiate β to C, informing us that the
result of the recursive call will be a non-empty list as well and guar-
anteeing that the irrefutable pattern-match will succeed. There is
one little subtlety here, though: in a conventional Hindley–Milner
type system we are not allowed, or even able, to instantiate β to
anything, as the type is kept monomorphic for recursive calls. We,
therefore, have to extend our type system with polyvariant recur-
sion. While inferring polymorphic recursive types is undecidable in
general (Kfoury et al. 1993; Henglein 1993)—and, being an auto-
matic analysis, we do not want to rely on any programmer-supplied
annotations—earlier research (Tofte and Talpin 1994; Dussart et al.
1995; Rittri 1995; Leroy and Pessaux 2000) has shown that this
special case of polyvariant recursion is often both crucial to obtain
adequate precision and feasible to infer automatically.

3.2 Exception flow
The intention of our analysis is to track the exceptions that may
be raised during the execution of a program. As with the data flow
we express this set of exceptions as an annotation on the type of a
program. For example, the program:

f x = x ÷ 0

should be given the exception type:

f : ∀α.Zα ∅−→ Zαtdivision-by-zero

This type explains that f is a function accepting an integer as
its first and only parameter. As we are working in a call-by-name
language, this integer might actually still be a thunk that raises an
exception from the set α when evaluated. The program then di-
vides this argument by zero, returning the result. While the result
will be of type integer, this operation is almost guaranteed to raise
a division-by-zero exception. It is almost guaranteed and not com-
pletely guaranteed to raise a division-by-zero exception, as the di-
vision operator is strict in both of its arguments and might thus
force the left-hand side argument to be evaluated before raising
the division-by-zero exception. This evaluation might then in turn
cause an exception from the set α to be raised first. The complete
result type is thus an integer with an exception annotation consist-
ing of the union (or join) of the exception set α on the argument to-
gether with an additional exception division-by-zero. Finally, we
note that there is an empty exception set annotating the function
space constructor, indicating that no exceptions will be raised when
evaluating f to a closure.

While this approach seems promising at first, it is not immedi-
ately adequate for our purpose: detecting potential pattern-match
failures that may occur at run time.

Consider the following program:

head (x :: xs) = x

After an initial desugaring step, a compiler will translate this pro-
gram into:

head xs = case xs of
[] 7→  pattern-match-failure

y :: ys 7→ y

which can be assigned the exception type:

head : ∀ταβ.[τα]β ∅−→ ταtβtpattern-match-failure

This type tells us that head might always raise a pattern-match-
failure exception, irrespective of what argument it is applied to.
Clearly, we won’t be able to outperform a simple syntactic analysis
in this manner. What we need is a way to introduce a dependency
of the exception flow on the data flow of the program, so we can
express that head will only raise a pattern-match-failure if it is
possible for the argument passed to it to be an empty list. We can
do so by introducing conditional constraints into our type system:

head : ∀ταβγ.[τα]β ∅−→ ταtβtγ

with {N v β ⇒ pattern-match-failure v γ}

This type explains that head will return an element of type τ that
might—when inspected—raise any exception present in the ele-
ments of the list (α), the spine of the list (β) or from an addi-
tional set of exceptions (γ), with the constraint that if the list to
which head is applied is empty, then this exception set contains
the pattern-match-failure exception, and otherwise is taken to be
empty. (We apologize for the slight abuse of notation—using the
annotation β to hold both data and exception-flow information—
this will be remedied in the formal type system.)

4. Formalities
4.1 Language
As our language of discourse we take a call-by-name λ-calculus
with booleans, integers, pairs, lists, exceptional values, general
recursion, let-bindings, pattern-matching, and a set of primitive
operators:

v ::= b | n |  ` | [] | close e in ρ

e ::= x | v | λx.e | fix f. e | e1 e2

| let x = e1 in e2 | if e1 then e2 else e3
| e1 ⊕ e2 | (e1, e2) | fst e | snd e
| e1 :: e2 | case e1 of {[] 7→ e2;x1 :: x2 7→ e3}
| bind ρ in e

b ∈ B n ∈ Z f, x ∈ Var ` ∈ P (Lbl)

Syntax The values v of the language include an exceptional value
 ` where the annotation ` denotes a set of exception labels. We
leave the exception labels uninterpreted, but an actual implemen-
tation will use them to distinguish between distinct exceptions (for
example, division-by-zero or a pattern-match failure), as well as to
store any additional information necessary to produce informative
error messages, such as source locations.

We adopt the following syntactic convention: we denote non-
exceptional values by v and possibly exceptional values by v`,
where ` corresponds to the set of exception labels in case v` is
an exceptional value and corresponding to the empty set otherwise.



The case-construct in the language is always assumed to be
complete. As our primary goal is to detect pattern-match failures
produced by incomplete case-expressions, we assume any incom-
plete case-expressions written by the programmer has first been ap-
propriately desugared into an equivalent complete case-expression
by filling out any missing arms in the incomplete case-expression
with an exceptional value  pattern-match-failure before being passed to
the analysis (Augustsson 1985; Maranget 2008).

The close and bind constructs are only necessary to formalize
the small-step operational semantics (Section 4.4) and are assumed
to be absent in the source program.

As call-by-name languages model exceptions as exceptional
values, instead of exceptional control-flow, we do not need a throw
or raise-construct. As most call-by-name languages omit a catch-
construct from their pure fragment, we shall do so as well.

Static semantics We assume that the program is well-typed ac-
cording to the canonical monomorphic type system and the under-
lying type of each subexpression is available to the analysis. In Sec-
tion 6.1 we discuss how the analysis can be extended to a language
with a polymorphic underlying type system.

4.2 Types
The types τ ∈ Ty of the type system are given by:

τ ::= α | τ1
α−→ τ2 | τ1 ×α τ2 | [τ ]α

Types are simply annotated types, comprised of a single base type
consisting of an annotation variable α ∈ AnnVar and the com-
pound types for functions, pairs and lists, each having its con-
structor annotated with an annotation variable. Simply annotated
types are given meaning in combination with a mapping or sub-
stitution from its free annotation variables to a lattice Λ, forming
Λ-annotated types.

The auxiliary function d · e : Ty→ AnnVar extracts the outer-
most annotation from a simply annotated type τ :

dαe = α⌈
τ1

α−→ τ2
⌉

= α

dτ1 ×α τ2e = α

d[τ ]αe = α

A type τ can be combined with a constraint set C (Section 4.5)
and have some of its free annotation variables quantified over into
a type scheme σ ∈ TySch:

σ ::= ∀α. τ with C

4.3 Environments
An environment Γ binds variables to type schemes and an environ-
ment ρ binds variables to expressions:

Γ ::= ε | Γ, x : σ

ρ ::= ε | ρ, x : e

As environments can be permuted, so long as shadowing of vari-
ables is not affected, we take the liberty of writing Γ, x : τ and
ρ, x : e to match the nearest (most recently bound) variable x in an
environment.

4.4 Operational semantics
The operational semantics of the language is given in Figure 1
and models a call-by-name language with an imprecise exception
semantics (Peyton Jones et al. 1999).

The small-step reduction relation ρ ` e −→ e′ has an ex-
plicit environment ρ, mapping variables to expressions (not neces-
sarily values). Closures are represented by the operator close e in ρ,
which closes the expression e in the environment ρ. The opera-
tor bind ρ in e binds the free variables in the expression e to ex-

pressions in the environment ρ. While similar there is one impor-
tant distinction between the close and the bind-construct: a closure
close e in ρ is a value, while a bind-expression can still be reduced
further.

[E-VAR] reduces a variable by looking up the expression bound
to it in the environment. As we do not allow for recursive definitions
without a mediating fix-construct, the variable x is removed from
the scope by binding e to the environment ρ, having the (nearest)
binding of x removed. [E-ABS] reduces a lambda-abstraction to a
closure, closing over its free variables in the current scope. [E-APP]
first reduces e1 until it has been evaluated to a function closure, af-
ter which [E-APPABS] performs the application by binding x to
e2 in the scope of e1. The scope of e2 is ρ1, the scope that was
closed over, while e1 gets bound by the outer scope ρ, as it is not
necessarily a value and may thus still have free variables that need
to remain bound in the outer scope. In case e1 does not evaluate to
a function closure, but to an exceptional value, [E-APPEXN1] will
first continue reducing the argument e2 to a (possibly exceptional)
value. Once this is done, [E-APPEXN2] will reduce the whole ap-
plication to a single exceptional value with a set of exceptional la-
bels consisting of the union of both the exception labels associated
with the applicee as well as the applicant. This behaviour is part of
the imprecise exception semantics of our language and will be fur-
ther motivated in the reduction rules for the if-then-else construct.
[E-LET] binds x to e1 in the scope of e2. [E-FIX] performs a one-
step unfolding, binding any recursive occurrences of the binder to
the original expression in its original scope. To reduce an if-then-
else expression, [E-IF] will start by evaluating the conditional e1. If
it evaluates to either the value true or the value false, [E-IFTRUE]
respectively [E-IFFALSE], will reduce the whole expression to the
appropriate branch e2 or e3. In case the conditional e1 reduces to
an exceptional value  `, the rules [E-IFEXN1] and [E-IFEXN2]
will continue evaluating both branches of the if-then-else expres-
sion, as dictated by the imprecise exception semantics. Finally,
once both arms have been fully evaluated to possibly exceptional
values v`2 and v`3 , [E-IFEXN3] will join all the exception labels
from the conditional and both arms together—remembering that we
by convention associate an empty set of exception labels with non-
exceptional values—in an exceptional value  `1t`2t`3 . This “im-
precision” is necessary to validate program transformations, such
as case-switching, in the presence of distinguishable exceptions:

∀ei .if e1 then
if e2 then e3 else e4

else
if e2 then e5 else e6 = if e2 then

if e1 then e3 else e5
else

if e1 then e4 else e6

Note that [E-OP1] and [E-OP2] (as well as several other reduction
rules) make the reduction relation non-deterministic, instead of en-
forcing a left-to-right evaluation order for operators by requiring
its left-hand argument to already be fully evaluated. Not enforcing
an evaluation order for operators will allow the compiler to apply
optimizing transformations, such as making use of the associativity
or commutativity of the operator. If both the left- and right-hand
side of the operator reduce to a numeric value, [E-OPNUM] will
reduce the expression to its interpretation Jn1 ⊕ n2K. If either of,
or both, the arguments reduce to an exceptional value, the rules
[E-OPEXN1], [E-OPEXN2] and [E-OPEXN3] will propagate the
exception labels of all the exceptional values in the expression. The
rules [E-PAIR] and [E-CONS] wrap the syntactic pair and cons con-
structors in a closure to make them into values—in a call-by-name
language constructors are only evaluated up to weak head normal
form (whnf ) and can still contain unevaluated subexpressions that



ρ, x : e ` x −→ bind ρ in e
[E-VAR]

ρ ` λx.e −→ close λx.e in ρ
[E-ABS]

ρ ` e1 −→ e′1
ρ ` e1 e2 −→ e′1 e2

[E-APP]
ρ ` (close λx.e1 in ρ1) e2 −→ bind (ρ1, x : bind ρ in e2) in e1

[E-APPABS]

ρ ` e2 −→ e′2
ρ `  `1 e2 −→  `1 e′2

[E-APPEXN1]
ρ `  `1 v`22 −→  `1t`2

[E-APPEXN2]

ρ ` let x = e1 in e2 −→ bind (ρ, x : bind ρ in e1) in e2
[E-LET]

ρ ` fix f. e −→ bind (ρ, f : bind ρ in fix f. e) in e
[E-FIX]

ρ ` e1 −→ e′1
ρ ` if e1 then e2 else e3 −→ if e′1 then e2 else e3

[E-IF]
ρ ` if true then e2 else e3 −→ e2

[E-IFTRUE]

ρ ` if false then e2 else e3 −→ e3
[E-IFFALSE]

ρ ` e2 −→ e′2
ρ ` if  `1 then e2 else e3 −→ if  `1 then e′2 else e3

[E-IFEXN1]

ρ ` e3 −→ e′3
ρ ` if  `1 then e2 else e3 −→ if  `1 then e2 else e′3

[E-IFEXN2]
ρ ` if  `1 then v`22 else v`33 −→  `1t`2t`3

[E-IFEXN3]

ρ ` e1 −→ e′1
ρ ` e1 ⊕ e2 −→ e′1 ⊕ e2

[E-OP1]
ρ ` e2 −→ e′2

ρ ` e1 ⊕ e2 −→ e1 ⊕ e′2
[E-OP2]

ρ ` n1 ⊕ n2 −→ Jn1 ⊕ n2K
[E-OPNUM]

ρ `  `1 ⊕ n2 −→  `1
[E-OPEXN1]

ρ ` n1 ⊕  `2 −→  `2
[E-OPEXN2]

ρ `  `1 ⊕  `2 −→  `1t`2
[E-OPEXN3]

ρ ` (e1, e2) −→ close (e1, e2) in ρ
[E-PAIR]

ρ ` e −→ e′

ρ ` fst e −→ fst e′
[E-FST]

ρ ` e −→ e′

ρ ` snd e −→ snd e′
[E-SND]

ρ ` fst (close (e1, e2) in ρ1) −→ bind ρ1 in e1
[E-FSTPAIR]

ρ ` snd (close (e1, e2) in ρ1) −→ bind ρ1 in e2
[E-SNDPAIR]

ρ ` fst  ` −→  `
[E-FSTEXN]

ρ ` snd  ` −→  `
[E-SNDEXN]

ρ ` e1 :: e2 −→ close e1 :: e2 in ρ
[E-CONS]

ρ ` e1 −→ e′1
ρ ` case e1 of {[] 7→ e2;x1 :: x2 7→ e3} −→ case e′1 of {[] 7→ e2;x1 :: x2 7→ e3}

[E-CASE]

ρ ` case [] of {[] 7→ e2;x1 :: x2 7→ e3} −→ e2
[E-CASENIL]

ρ ` case (close e1 :: e′1 in ρ1) of {[] 7→ e2;x1 :: x2 7→ e3}−→ bind (ρ, x1 : bind ρ1 in e1, x2 : bind ρ1 in e′1) in e3
[E-CASECONS]

ρ ` e2 −→ e′2
ρ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3} −→ case  `1 of {[] 7→ e′2;x1 :: x2 7→ e3}

[E-CASEEXN1]

ρ, x1 :  ∅, x2 :  ∅ ` e3 −→ e′3
ρ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3} −→ case  `1 of {[] 7→ e2;x1 :: x2 7→ e′3}

[E-CASEEXN2]

ρ ` case  `1 of
{
[] 7→ v`22 ;x1 :: x2 7→ v`33

}
−→  `1t`2t`3

[E-CASEEXN3]

ρ1 ` e1 −→ e′1
ρ ` bind ρ1 in e1 −→ bind ρ1 in e′1

[E-BIND1]
ρ ` bind ρ1 in v`11 −→ v`11

[E-BIND2]

Figure 1. Operational semantics (ρ ` e1 −→ e2)

need to have their free variables closed over in their original scope.
[E-FST] evaluates the argument passed to fst to a normal form. If
it is an exceptional value, [E-FSTEXN] will propagate it; if it is a
closed pair constructor, [E-FSTPAIR] will project the first argument
and bind its free variables in the environment it has been closed
over. Accordingly for [E-SND], [E-SNDEXN] and [E-SNDPAIR].
[E-CASE] will evaluate the scrutinee of a case-expression to a nor-
mal form. If it evaluates to a nil-constructor, [E-CASENIL] will
select the first arm. If it evaluates to a closed cons-constructor,
[E-CASECONS] will select the second arm, binding x1 and x2
to respectively the first and second component of the construc-
tor in the environment the constructor was closed over. In case
the scrutinee evaluates to an exceptional value [E-CASEEXN1],
[E-CASEEXN2] and [E-CASEEXN3] will continue evaluating both
arms and gather and propagate all exception labels encountered. In
the reduction rule [E-CASEEXN2] we still need to bind x1 and x2

to some expression in ρ. As this expression we take  ∅ in both
cases, as it is the least committing value in our system: it is associ-
ated with both an empty set of exceptional values, as well as with
an empty set of non-exceptional values. [E-BIND1] and [E-BIND2]
will continue evaluating any expression e in the given environment
ρ1 until it has been fully reduced to a value, which either contains
no free variables, or has them explicitly closed over by a close-
construct.

Diverging expressions Note that diverging expressions, such as
 (fix f. f) will not raise an exception in this operational seman-
tics. This is not consistent with Haskell’s imprecise exception se-
mantics, where this is possible. Resolving this discrepancy without
sacrificing precision would involve adding a termination analysis
(cf. Vazou et al. 2014). While we believe this can be accommodated
with minor changes to the analysis, we shall not further address this
issue in remainder of the paper.



4.5 Constraints
A constraint c restricts the Λ-substitutions that may be applied to
a simply annotated type to turn it into an Λ-annotated type. A
constraint c is a conditional, consisting of a left-hand side g and
a right-hand side r:

c ::= g ⇒ r

g ::= Λι vι α | ∃ια | g1 ∨ g2 | true
r ::= Λι vι α | α1 vι α2 | τ1 6ι τ2

The left-hand side g of a conditional constraint, its guard, con-
sists of a disjunction of atomic guards Λι vι α, relating an element
of the lattice Λι to an annotation variable α, and non-emptiness
guards ∃ια, a predicate on the annotation variable α.

The right-hand side r of a conditional or unconditional con-
straint can either be an atomic constraint Λι vι α, relating an
element of the lattice Λι to an annotation variable α, or an atomic
constraint α1 vι α2, relating two annotation variables, or it can
be a structural constraint τ1 6ι τ2, relating two simply annotated
types.

The asymmetry between the allowed forms of the antecedent g
and consequent r of the conditional constraints is intentional: they
allow constraints to be formed that are expressive enough to build
an accurate analysis, but limited enough so as to allow tractable
constraint solving. Both allowing constraints of the form g1 ∨ g2
on the right-hand side of a conditional, or allowing constraints
of the form α1 vι α2 on the left-hand side of a conditional
make constraint solving notoriously difficult: the former because
it cannot be trivially decomposed into a set of simpler constraints
and the latter because it does not behave monotonically under a
fixed-point iteration.

The atomic and structural constraint relations are qualified by
an index ι, which for the purpose of our analysis can be one of two
constants:

ι ::= δ | χ

Here δ is used to indicate data-flow, while χ indicates exception-
flow.

To ease the syntactic burden we freely write constraint expres-
sions indexed by the two constraint indices δχ simultaneously. For-
mally these should always be read as standing for two separate con-
straint expressions: one indexed by δ and the other indexed by χ. As
none of the constraint expressions in this paper contain more than
one such paired index, no ambiguities should arise. Furthermore,

c̃ ::= c | g

and constraints true⇒ r shall be written simply as r.
Constraints are given meaning by the constraint satisfaction

predicate θ � c̃, which relates a constraint c, g or r to the meaning
of its free variables, which are in turn given by a pair of ground
substitutions θ = 〈θδ, θχ〉:

θια1 vι θια2

θ � α1 vι α2
[CM-VAR]

`ι vι θια
θ � `ι vι α

[CM-CON]

`ι vι θια `ι 6= ⊥ι
θ � ∃ια

[CM-EXISTS]
θ � true

[CM-TRUE]

θ � g1
θ � g1 ∨ g2

[CM-LEFT]
θ � g2

θ � g1 ∨ g2
[CM-RIGHT]

θ � g ⇒ θ � r
θ � g ⇒ r

[CM-IMPL]
θιτ1 6ι θιτ2
θ � τ1 6ι τ2

[CM-SUB]

Working with constraints in terms of the constraint satisfaction
predicate is rather tedious, so we prefer to work with a constraint
entailment relation C 
 c̃ and an associated constraint logic:

C 
 ⊥ι vι α
[CL-⊥]

C 
 α vι >ι
[CL->]

C, g 
 r
C 
 g ⇒ r

[CL-⇒I]
C 
 g ⇒ r

C, g 
 r
[CL-⇒E]

C 
 g1
C 
 g1 ∨ g2

[CL-∨I]
C 
 g1 ∨ g2
C 
 g2 ∨ g1

[CL-∨C]

C 
 Λι vι α
C 
 ∃ια

[CL-∃I]
C1 
 c̃

C1, C2 
 c̃
[CL-WEAK]

C 
 c̃1 C, c̃1 
 c̃2
C 
 c̃2

[CL-MP]

We lift the constraint entailment relation to work on constraint
sets C1 
 C2 in the obvious way.

Theorem 1 (Soundness of constraint logic). If θ � C and C 
 D
then θ � D.

The subtyping relation is as usual for a type and effect system,
thus note the subeffecting of the annotations:

C 
 τ1 6ι τ2 C 
 τ2 6ι τ3
C 
 τ1 6ι τ3

[S-TRANS]

C 
 τ 6ι τ
[S-REFL]

C 
 α1 vι α2

C 
 α1 6ι α2
[SA-BASE]

C 
 τ3 6ι τ1 C 
 τ2 6ι τ4 C 
 α1 vι α2

C 
 τ1
α1−−→ τ2 6ι τ3

α2−−→ τ4
[SA-FUN]

C 
 τ1 6ι τ3 C 
 τ2 6ι τ4 C 
 α1 vι α2

C 
 τ1 ×α1 τ2 6ι τ3 ×α2 τ4
[SA-PAIR]

C 
 τ1 6ι τ2 C 
 α1 vι α2

C 
 [τ1]
α1 6ι [τ2]

α2
[SA-LIST]

4.6 Type system
A syntax-directed type system for exception analysis is given in
Figure 2.

[T-VAR] combines a lookup in the type environment with in-
stantiation of variables quantified over in the type scheme. [T-CON]
and [T-EXN] make sure that any constants and exception literals
flow into the top-level annotations of their type. Constants will
have to be abstracted into an element of the lattice Λδ , using the
auxiliary function i, first. [T-APP] incorporates a subtyping check
between the formal and the actual parameter and flows all excep-
tions than can be caused by evaluating the function abstraction—as
represented by the annotation on the function-space constructor—
into the top-level annotation of the resulting type. The final premise
flows any exceptions that can be raised by evaluating the argument
to weak head normal form to the top-level annotation on the re-
sult type if it is possible for the function that the argument is ap-
plied to, to evaluate to an exceptional value. This is necessary to
soundly model the imprecise exception semantics. [T-ABS] is stan-
dard, with only an additional annotation present on the function-
space constructor. [T-FIX] and [T-LET] are the conventional rules
for polymorphic recursion and polymorphic let-bindings with con-
strained types and are the only rules with a non-trivial algorith-
mic interpretation (see Section 5). [T-IF] uses subtyping to ensure
that the exceptional and non-exceptional values of both branches,



C 
 D
[
β/α

]
C; Γ, x : ∀α. τ with D ` x : τ

[
β/α

] [T-VAR]
C 
 i(c) vδ α
C; Γ ` c : α

[T-CON]
C 
 ` vχ dτe
C; Γ `  ` : τ

[T-EXN]

C; Γ ` e1 : τ1
α−→ τ2 C; Γ ` e2 : τ3 C 
 τ3 6δχ τ1 C 
 τ2 6δχ τ4 C 
 α vχ dτ4e C 
 ∃χα⇒ dτ3e vχ dτ4e

C; Γ ` e1 e2 : τ4
[T-APP]

C; Γ, x : τ1 ` e : τ2

C; Γ ` λx.e : τ1
α−→ τ2

[T-ABS]
D; Γ ` e1 : τ1 C; Γ, x : ∀α. τ1 with D ` e2 : τ2 α ∩ fv(Γ) = ∅

C; Γ ` let x = e1 in e2 : τ2
[T-LET]

C 
 D
[
β/α

]
D; Γ, f : ∀α. τ1 with D ` e : τ2 D 
 τ2 6δχ τ1 α ∩ fv(Γ) = ∅

C; Γ ` fix f. e : τ1
[
β/α

] [T-FIX]

C; Γ ` e1 : α1 C; Γ ` e2 : τ2 C; Γ ` e3 : τ3

C 
 T vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ C 
 F vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ C 
 α1 vχ dτe
C; Γ ` if e1 then e2 else e3 : τ

[T-IF]

C; Γ ` e1 : α1 C; Γ ` e2 : α2 C 
 α1 vχ α C 
 α2 vχ α C 
 ω⊕(α1, α2, α)

C; Γ ` e1 ⊕ e2 : α
[T-OP]

C; Γ ` e1 : τ1 C; Γ ` e2 : τ2
C; Γ ` (e1, e2) : τ1 ×α τ2

[T-PAIR]

C; Γ ` e : τ1 ×α τ2 C 
 τ1 6δχ τ C 
 α vχ dτe
C; Γ ` fst e : τ

[T-FST]
C; Γ ` e : τ1 ×α τ2 C 
 τ2 6δχ τ C 
 α vχ dτe

C; Γ ` snd e : τ
[T-SND]

C 
 N vδ α
C; Γ ` [] : [τ ]α

[T-NIL]

C; Γ ` e1 : τ1 C; Γ ` e2 : [τ2]
α2

C 
 τ1 6δχ τ C 
 τ2 6δχ τ C 
 C vδ α C 
 α2 vχ α
C; Γ ` e1 :: e2 : [τ ]α

[T-CONS]

C; Γ ` e1 : [τ1]
α1 C; Γ ` e2 : τ2 C; Γ, x1 : τ1, x2 : [τ1]

β ` e3 : τ3

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ C 
 C vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ C 
 α1 vχ dτe
C 
 N t C vδ β C 
 α1 vχ β

C; Γ ` case e1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ
[T-CASE]

C; ∆ ` e : σ C ` ∆ ./ ρ

C; Γ ` close e in ρ : σ
[T-CLOSE]

C; ∆ ` e : σ C ` ∆ ./ ρ

C; Γ ` bind ρ in e : σ
[T-BIND]

Figure 2. Syntax-directed type system (C; Γ ` e : σ)

as well as any exceptions that can occur while evaluating the con-
ditional are propagated to the resulting type. Additionally, condi-
tional constraints are used to ensure that only reachable branches
will contribute to the resulting type. A branch is considered reach-
able if either the conditional can evaluate to true respectively false,
or because evaluating the conditional can cause an exception and
we have to consider both branches as being reachable to validate the
case-switching transformation. The typing rule [T-OP] for prim-
itive operators will be discussed in Section 4.7. [T-PAIR] is the
standard type rule for pairs, except that we add an unconstrained an-
notation to the pair constructor. [T-FST] and [T-SND] are standard
type rules for projections from a pair. As they implicitly perform a
pattern-match, they have to propagate any exceptions that can occur
when evaluating the pair-constructor to the resulting type. [T-NIL]
gives the nil-constructor the type list of τ , with τ unconstrained,
and an annotation α indicating the head of the spine of the list can
at least contain a nil-constructor. [T-CONS] merges data-flow and
exception-flow of the head and elements in the tail of the list, anno-
tates the resulting type with an α indicating the head of the spine of
the list can at least contain a cons-constructor, and propagates the

exceptions that can occur in the tail of the spine of the list to the
resulting type. [T-CASE] is similar to [T-IF]. The additional com-
plication lies in the fact that the pattern for a cons-constructor must
also bring its two fields into scope and give them an appropriate
type. Note how in [T-CONS] and [T-CASE] exceptional and non-
exceptional values are treated asymmetrically. In the rule [T-CONS]
exceptional values in the spine of the tail of the list flow into the re-
sult, while we only remember C as the non-exceptional value than
can occur at the head of the spine of the resulting list. This choice
means that in [T-CASE], while we have more precise information
about the head of the list, we have to be pessimistic about the shape
of the list that gets bound to x2. Conversely, for exceptional val-
ues we have less precise information about the head of the spine
of the list. We can, however, be optimistic about the exceptional
values occuring in the spine of the list that gets bound to x2. Not
being able to do so would be disasterous for the precision of the
analysis. Any further pattern-matching on the spine of x2, whether
directly or through applying operations such as map or reverse to
it, would cause the—likely spurious—exceptions to propagate. Fi-
nally, [T-CLOSE] and [T-BIND] type the expression e they close



over or bind in an expression environment ρ, under a type environ-
ment ∆ that types the expression environment ρ. These rules relate
the type environments Γ with the expression environments ρ using
an environmental consistency relation C ` Γ ./ ρ:

C ` ε ./ ε [EC-EMPTY]

C ` Γ ./ ρ C; Γ ` e : σ

C ` Γ, x : σ ./ ρ, x : e
[EC-EXTEND]

4.7 Primitive operators
The typing rule [T-OP] for primitive operators relies on an auxiliary
function ω that assigns a constraint set for each operator, giving its
abstract interpretation. For an addition operator + one can take the
constraint set:

ω+(α1, α2, α)
def
= {>Z vδ α}

or the more precise:

ω+(α1, α2, α)
def
=



- vδ α1 ⇒ - vδ α
- vδ α2 ⇒ - vδ α

0 vδ α
+ vδ α1 ⇒ + vδ α
+ vδ α2 ⇒ + vδ α


If we would extend our constraints to allow conjunctions on the
left-hand side of conditionals we can even get rid of the spurious
0’s:

ω+(α1, α2, α)
def
=



- vδ α1 ⇒ - vδ α
- vδ α2 ⇒ - vδ α

- vδ α1 ∧ + vδ α2 ⇒ 0 vδ α
0 vδ α1 ∧ 0 vδ α2 ⇒ 0 vδ α
+ vδ α1 ∧ - vδ α2 ⇒ 0 vδ α

+ vδ α1 ⇒ + vδ α
+ vδ α2 ⇒ + vδ α


Similarly, we are able to detect division-by-zero exceptions caused
by an integer division operator ÷:

ω÷(α1, α2, α)
def
=



0 vδ α2 ⇒ {div-by-0} vχ α
- vδ α1 ∧ - vδ α2 ⇒ + vδ α
- vδ α1 ∧ + vδ α2 ⇒ - vδ α
+ vδ α1 ∧ - vδ α2 ⇒ - vδ α
+ vδ α1 ∧ + vδ α2 ⇒ + vδ α

0 vδ α


We do impose two restrictions on the operator constraint sets;

they need to be consistent and monotonic:

Definition 1. An operator constraint set ω⊕ is said to be consistent
with respect to an operator interpretation J · ⊕ · K if, whenever
C; Γ ` n1 : α1, C; Γ ` n2 : α2, and C 
 ω⊕(α1, α2, α) then
C; Γ ` Jn1 ⊕ n2K : α′ with C 
 α′ 6δχ α for some α′.

This restriction states that the interpretation of an operator and
its abstract interpretation by the operator constraint set should co-
incide. We need one slightly more technical restriction to be able to
prove our system sound:

Definition 2. An operator constraint set ω⊕ is monotonic if, when-
ever C 
 ω⊕(α1, α2, α) and C 
 α′1 vδχ α1, C 
 α′2 vδχ α2,
C 
 α vδχ α′ then C 
 ω⊕(α′1, α

′
2, α
′).

Informally this means that operator constraint sets can only let
the result of evaluating an operator and its operands depend on the
values of those operands and not the other way around: the operator
constraint sets must respect the fact that we are defining a forwards
analysis.

4.8 Declarative rules
While we have formulated the analysis directly as a syntax-directed
type system, we do need to appeal to the three logical rules that
have been folded into the non-logical ones—in order to make the
system syntax-directed—in the metatheoretic proofs. Their formu-
lation should hold no surprises:

C; Γ ` e : ∀α. τ with D C 
 D
[
β/α

]
C; Γ ` e : τ

[
β/α

] [T-INST]

C,D; Γ ` e : τ α ∩ fv(Γ;C) = ∅
C; Γ ` e : ∀α. τ with D

[T-GEN]

C; Γ ` e : τ C 
 τ 6δχ τ ′

C; Γ ` e : τ ′
[T-SUB]

4.9 Metatheory
Three theorems imply the correctness of the analysis:

Theorem 2 (Conservative extension). If e is well-typed in the
underlying type system, then it can be given a type in the annotated
type system.

Theorem 3 (Progress). If C; Γ ` e : σ then either e is a value
or there exist an e′, such that for any ρ with C ` Γ ./ ρ we have
ρ ` e −→ e′.

Theorem 4 (Preservation). If C; Γ ` e : σ1, ρ ` e −→ e′ and
C ` Γ ./ ρ then C; Γ ` e′ : σ2 with C 
 σ2 6δχ σ1.

5. Algorithm
The analysis can be implemented as a three-stage type inference
process. In the first stage we invoke a standard Hindley–Milner type
inference algorithm to make sure the input program is well-typed
and to give the second stage access to the underlying types of all
subexpressions. The second stage generates a set of constraints and
the third stage solves those constraints.

5.1 Constraint generation
The constraint inference algorithmW is given in Figure 3. The case
for fix is discussed in Section 5.3. As the close and bind-constructs
are included for metatheoretic purposes only and assumed not to be
present in the initial unevaluated program text, we do not need to
include any cases for them in the algorithm.

The auxiliary function freshFrom creates a type with the same
type-constructor shape as the given underlying type υ, with all an-
notation variables fresh; gen quantifies over all annotation vari-
ables free in τ but not free in Γ; inst instantiates all quantified
annotation variables in τ and C with fresh ones.

5.2 Constraint solving
The constraint solver S takes a constraint set C and produces a
substitution θ that solves it. The solver assumes that all structural
constaints (6ι) have been decomposed into atomic constraints (vι)
using the syntax-directed part of the subtyping relation (SA-) as a
decomposition algorithm.

The constraint solver S relies on the function dv that determines
the dependent variables of a constraint c: the variables that if
updated may require the constraint to be reevaluated during the fix-
point iteration.



W : Env× Expr→ Ty× P Constr
W Γ x = inst Γx

W Γ c = typeOf c

W Γ ( ` : υ) = do τ ← freshFrom υ

return
〈
τ,
{
` vχ dτe

}〉
W Γ (λx : υ.e) = do τ1 ← freshFrom υ

〈τ2,C2〉 ← W (Γ, x : τ1) e
α← fresh

return
〈
τ1

α−→ τ2,C2

〉
W Γ (e1 e2 : υ) = do

〈
τ1

α−→ τ2,C1

〉
←W Γ e1

〈τ3,C2〉 ← W Γ e2
τ4 ← freshFrom υ

C3 ←
{
τ3 6δχ τ1, τ2 6δχ τ4, α vχ dτ4e

∃χ α⇒ dτ3e vχ dτ4e

}
return 〈τ4,C1 ∪ C2 ∪ C3〉

W Γ (let x = e1 in e2)

= do 〈τ1,C1〉 ← W Γ e1
σ1 ← gen Γ τ1 C1

〈τ2,C2〉 ← W (Γ, x : σ1) e2
return 〈τ2,C1 ∪ C2〉

W Γ (if e1 then e2 else e3 : υ)

= do 〈α1,C1〉 ← W Γ e1
〈τ2,C2〉 ← W Γ e2
〈τ3,C3〉 ← W Γ e3
τ ← freshFrom υ

C4 ←


α1 vχ dτe

T vδ α1 ∨ ∃χ α1 ⇒ τ2 6δχ τ

F vδ α1 ∨ ∃χ α1 ⇒ τ3 6δχ τ


return 〈τ,C1 ∪ C2 ∪ C3 ∪ C4〉

W Γ (e1 ⊕ e2) = do 〈α1,C1〉 ← W Γ e1
〈α2,C2〉 ← W Γ e2
α← fresh

C3 ←
{
α1 vχ α, α2 vχ α

}
C4 ← ω⊕(α1, α2, α)

return 〈α,C1 ∪ C2 ∪ C3 ∪ C4〉

W Γ (e1, e2) = do 〈τ1,C1〉 ← W Γ e1
〈τ2,C2〉 ← W Γ e2
α← fresh

return 〈τ1 ×α τ2,C1 ∪ C2〉
W Γ (fst e : υ) = do 〈τ1 ×α τ2,C1〉 ← W Γ e

τ ← freshFrom υ

C2 ←
{
τ1 6δχ τ, α vχ dτe

}
return 〈τ,C1 ∪ C2〉

W Γ (snd e : υ) = do 〈τ1 ×α τ2,C1〉 ← W Γ e

τ ← freshFrom υ

C2 ←
{
τ2 6δχ τ, α vχ dτe

}
return 〈τ,C1 ∪ C2〉

W Γ ([] : υ) = do τ ← freshFrom υ

α← fresh

return
〈
[τ ]α ,

{
N vδ α

}〉
W Γ (e1 :: e2) = do 〈τ1,C1〉 ← W Γ e1

〈[τ2]α2 ,C2〉 ← W Γ e2
τ ← fresh
α← fresh

C3 ←
{
τ1 6δχ τ, τ2 6δχ τ

C vδ α, α2 vχ α

}
return 〈[τ ]α ,C1 ∪ C2 ∪ C3〉

W Γ (case e1 of {[] 7→ e2; x1 :: x2 7→ e3} : υ)

= do 〈[τ1]α1 ,C1〉 ← W Γ e1
〈τ2,C2〉 ← W Γ e2
β ← fresh

〈τ3,C3〉 ← W (Γ, x1 : τ1, x2 : [τ1]
β) e3

τ ← freshFrom υ

C4 ←


α1 vχ dτe

N vδ α1 ∨ ∃χ α1 ⇒ τ2 6δχ τ

C vδ α1 ∨ ∃χ α1 ⇒ τ3 6δχ τ

N t C vδ β, α1 vχ β


return 〈τ,C1 ∪ C2 ∪ C3 ∪ C4〉

Figure 3. Constraint inference algorithm

5.3 Knowing when to stop
So far we have omitted the algorithmic rule for fix. It performs a
Kleene–Mycroft fixed-point iteration:

W Γ (fix f : υ. e) = do σ ← ⊥υ
repeat
σ′ ← σ
〈τ,C 〉 ← W (Γ, f : σ) e
σ ← gen Γ τ C
until σ � σ′

〈τ2,C2〉 ← inst σ
return 〈τ2,C2〉

Problematically, it is not guaranteed that σ′ will ever become a
generic instance of σ. Dussart et al. (1995) show that this is the case
for a simpler type of constraints (subtyping only) by noting that any
variable that does not occur free in σ or Γ can be eliminated (e.g.,
the constraint set {α1 v α2, α2 v α3} with α2 not free in σ and
Γ can be reduced to {α1 v α3}). The result then follows from the
fact that only a finite (quadratic) number of subtype constraints can
be formed over the finite set of remaining variables.

However, we also have conditional constraints and variables
occurring in their left-hand side cannot easily be eliminated. If we

want to maintain soundness and termination of the analysis we will
have to introduce an additional layer of approximation.

The constraint set

{Λι vι α⇒ r, g1 ⇒ β1 vι α, g2 ⇒ β2 vι α}

with α not free in σ or Γ, can—after having suitably extended the
allowed syntax of constraints to allow for nested implications—be
rewritten into:

{Λι vι (g1 ⇒ β1 t g2 ⇒ β2)⇒ r}

As g1 and g2 may again contain variables that need to be elimi-
nated, and we want to keep the size of the individual constraints
bounded, we may eventually need to approximate constraints
g ⇒ α by setting their guard g to true.

Alternatively, during the first k Kleene–Mycroft iterations we
can neglect to eliminate variables that occur on the left-hand side
of a constraint, building an additional finite set I of ineliminable
variables. During the later iterations we intentionally introduce
poisoning by instead of generating a fresh variable that will end up
in the left-hand side of constraint, reusing a variable from I . The
trick would then be in picking variables in such a way that would
not disturb a fixed-point that may already have been reached after
k iterations.



S : P Constr→ Subst
S C = do — initialization

for each α ∈ fv C do
θδ[α] ← ∅
θχ[α]← ∅
D[α] ← ∅

— dependency analysis of constraints
for each c ∈ C do

for each α ∈ dv c do
D[tv c]← D[α] ∪ {c}

— fix-point iteration using worklist
W ← C
while W 6≡ ∅ do
{g ⇒ r} ∪W ←W
if 〈θδ, θχ〉 � g then

case r of
Λι vι α 7→ if θι[α] 6≡ θι[α] t Λι then

θι[α]← θι[α] t Λι
W ←W ∪D[α]

α1 vι α2 7→ if θι[α2] 6≡ θι[α1] t θι[α2] then
θι[α2]← θι[α1] t θι[α2]

W ←W ∪D[α2]

return 〈θδ, θχ〉
dv : Constr→ P Var
dv c = do V ← ∅

case c of
g ⇒ α1 vι α2 7→ V ← V ∪ {α1}

case c of
Λι vι α⇒ r 7→ V ← V ∪ {α}
∃ια⇒ r 7→ V ← V ∪ {α}
g1 ∨ g2 ⇒ r 7→ V ← V ∪ dv g1 ∪ dv g2

return V
tv : Constr→ Var
tv c = do case c of

r ⇒ Λι vι α 7→ return α
r ⇒ α1 vι α2 7→ return α2

Figure 4. Constraint solver

6. Extensions
To handle the motivating examples from Section 2 a number of
extensions to the language and analysis are necessary. (These are
not supported by the prototype mentioned in Section 1.1, but are
being implemented in an improved prototype.)

6.1 Polymorphism
Consider the polymorphic function apply :

apply : ∀αβ.(α→ β)→ α→ β
apply f x = f x

As we cannot inspect an expression with a polymorphic type
other than by the exceptions that it may raise when forced to weak
head normal form, it is sufficient to treat them as any other base
type.

Thus, the function apply will be given the following type by our
analysis:

∀αβγδεζ.
(
α

δ−→ β
)

ε−→ γ
ζ−→ β

with {γ 6δχ α, δ vχ β, ∃χδ ⇒ γ vχ β}

Care needs to be taken when we instantiate the polymorphic
variables of a polymorphic type in the underlying type system.
When doing so we must also simultaneously update the corre-
sponding polyvariant type used by the analysis.

For example, instantiating the polymorphic underlying type of
apply with [α 7→ Z× Z, β 7→ B× B] will give rise to the instan-
tiation

[
α 7→ η×α θ, β 7→ ι×β κ, γ 7→ λ×γ µ

]
of the polyvari-

ant type used in the analysis:

∀αβγδεζηθικλµ.
(
η×α θ

δ−→ ι×β κ
)

ε−→ λ×γ µ
ζ−→ ι×β κ

with {λ×γ µ 6δχ η×α θ, δ vχ β, ∃χδ ⇒ γ vχ β}
In the general case we need to:

1. Generate an almost fresh linear type for each of the polyvariant
variables positionally corresponding to a polymorphic variable
that has been instantiated in the underlying type. This type is
almost, but not entirely, fresh as we do need to preserve the
original variable as the top-level annotation on the new fresh
type. Thus, for a type substitution α 7→ τ , we need dτe = α.
Note that multiple polyvariant type variables in the type inferred
by the analysis might correspond to a single polymorphic type
variable that is being instantiated in the underlying type. In the
example given above both the polyvariant variables α and γ
correspond positionally to the polymorphic type variable α.

2. We need to quantify over all the fresh variables introduced.

3. We need to apply the type substitution to the constraint set,
but only to the structural constraints (6ι) and not the atomic
constraints (vι), as the latter were generated solely to relate
top-level annotations to each other.

Due to structural constraints being treated differently from atomic
constraints, the analysis now must also be careful not to decompose
the structural constraints into atomic constraints too early. While
an implementation will already want to postpone this until right
before sending all the gathered constraints to the constraint solver
for performance reasons, this now also becomes important for
correctness.

6.2 Algebraic data types
We admit that “non-strict higher-order functional languages with
imprecise exception semantics” is something of a euphemism for
Haskell. The biggest remaining piece of the puzzle to scaling this
analysis to work on the full Haskell language is the support for
pattern-matching on arbitrary user-defined algebraic data types.

While the construction and destruction rules we defined for
lists—keeping track of the constructors that can occur at the head
of the spine, assuming the constructors occurring in the tail can
always be both a nil and a cons-constructor—work adequately for
functions operating on nil-terminated lists, this approach will not
give useful results when extended to other algebraic data types
and applied to the desugaring example from Section 2.3, even if
extended to keep track of the constructors that can occur in the first
k positions of the spine. We critically rely on knowing which of the
constructors can occur throughout the whole spine of the abstract
syntax tree.

We would need to combine both approaches for an accurate
analysis: we need to know which constructor can occur at the head
of a data structure and which constructors can occur throughout
the rest of the spine or, formulated differently, at the recursive
positions of the data type. This approach is reminiscent of Catch’s
multipatterns (Mitchell and Runciman 2008).

The most straightforward implementation splits the data flow
into two separate flows δ1 and δ2: one to track the constructors
occurring at the head of a spine and one to keep track of the



constructors occuring in the tail of the spine.

ι, κ ::= δ1 | δ2 | χ

While technically simple, the required modifications to the type
system are notationally heavy as—unlike between the data flow
and the exception flow—values can flow directly between δ1 and
δ2 and it therefore is no longer sufficient to attach a single flow
index ι to atomic constraints between variables:

r ::= ... | α1 ιvκ α2 | ...

The updated typing rules involving lists would read:

C 
 N vδ12 α
C; Γ ` [] : [τ ]α

[T-NIL]

C; Γ ` e1 : τ1 C; Γ ` e2 : [τ2]
α2

C 
 τ1 6δ12χ τ C 
 τ2 6δ12χ τ

C 
 C vδ1 α C 
 α2 χvχ α C 
 α2 δ12vδ2 α
C; Γ ` e1 :: e2 : [τ ]α

[T-CONS]

C; Γ ` e1 : [τ1]
α1 C; Γ ` e2 : τ2

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3

C 
 N vδ1 α1 ∨ ∃χα1 ⇒ τ2 6δ12χ τ

C 
 C vδ1 α1 ∨ ∃χα1 ⇒ τ3 6δ12χ τ

C 
 α1 δ2vδ12 β C 
 α1 χvχ β C 
 α1 χvχ dτe
C; Γ ` case e1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ

[T-CASE]

Some additional issues need to be resolved to generalize to ar-
bitrary algebraic data types. In general polyvariance in the analysis
should not be directly related to polymorphism in the underlying
type system, so all fields in a data type can or should be poly-
variantly parameterized, irrespective of whether the field is poly-
morphically parameterized in the underlying system (Wansbrough
2002). Since we are making use of subtyping, the variance (co-,
contra-, in- or non-) of fields should be propagated to the polyvari-
ant parameters.

6.3 Static contract checking
Our analysis can also be used for static contract checking. A con-
tract can be desugared into a Findler–Felleisen wrapper (Findler
and Felleisen 2002), raising a contract violation exception (to-
gether with some additional information on who to blame for the
violation) when a contract violation is detected. The data flow-
dependence of the analysis should be able to statically determine
some contract can never be violated and prevent the contract viola-
tion exception from being propagated.

7. Related Work
Catch and Dialyzer The Catch case totality checker (Mitchell and
Runciman 2008) employs a first-order backwards analysis, infer-
ring preconditions on functions under which it is guaranteed that
no exceptions will be raised or pattern-match failures will occur. To
analyze Haskell programs, a specially crafted and incomplete de-
functionalization step is required. In contrast, our forwards analysis
is type-driven and will naturally work on higher-order programs.
Furthermore, Catch assumes functions are strict in all their argu-
ments, while our analysis tries to model the call-by-name semantics
more accurately.

The Dialyzer discrepancy analyzer for Erlang (Lindahl and Sag-
onas 2006) works in a similar spirit to our analysis, except that it
has a dual notion of soundness: Dialyzer will only warn about func-
tion applications that are guaranteed to generate an exception.

Exception analyses Several exception analyses have been de-
scribed in the literature, primarily targeting the detection of un-
caught exceptions in ML. The exception analysis in Yi (1994) is
based on abstract interpretation. Guzmán and Suárez (1994) and
Fahndrich et al. (1998) describe type-based exception analyses,
neither are very precise. The row-based type system for excep-
tion analysis described in Leroy and Pessaux (2000) does contain-
ing a data-flow analysis component, although one that is special-
ized towards tracking value-carrying exceptions instead of value-
dependent exceptions and thus employs a less precise unification
method instead of subtyping. Glynn et al. (2002) developed the first
exception analysis for non-strict languages. It is a type-based anal-
ysis using Boolean constraints and, although it does not take data
flow into account, has a similar flavour to our system.

Conditional constraints The use of conditional constraints in
program analysis can be traced back to Reynolds (1968). Heintze
(1994) uses conditional constraints to model branches in case-
expressions for a dead-code analysis. Constraint-based k-CFA
analyses (Shivers 1988), although traditionally not formulated as a
type system, can use conditional constraints to let the control flow
depend on the data flow. Aiken et al. (1994) uses conditional con-
straints to formulate a soft-typing system for dynamic languages.
Pottier (2000) developed an expressive constraint-based type sys-
tem incorporating subtyping, conditional constraints and rows and
applied it to several inference problems, including accurate pattern-
matchings.

Refinement types (à la dependent types) and contract checking
There has been a long line of work exploring various approaches of
refinement types in the sense of using dependent types to specify
contracts (also termed contract types or refinement predicates).
A refinement type expressing all natural numbers greater than or
equal to five would be written as:

{x : N | x > 5}

Dependent ML (Xi 2007) purposely limits the expressiveness of
contracts, so contract checking—although not inference—remains
decidable. Xu et al. (2009) uses symbolic evaluation to check con-
tracts on Haskell programs. Knowles and Flanagan (2010) devel-
oped a framework for hybrid type checking, where the checking of
contracts that could not be proven to either always hold or be vi-
olated at compile-time are deferred until run-time. The work on
liquid types by Rondon et al. (2008) attempts to automatically
infer such refinements using the technique of predicate abstrac-
tion. MoCHi (Kobayashi et al. 2011) employs higher-order model
checking. HALO (Vytiniotis et al. 2013) is a static contract checker
that works by translating a Haskell program and its contracts into
first-order logic, which can then be proven using an SMT solver.

Refinement types (à la intersection types) The refinement type
system in Freeman and Pfenning (1991) attempts to assign more
accurate, refined types to already well-typed ML programs using
union and intersection types (Pierce 1991) with the detection of
potential pattern-match failures and reduction of warnings about
incomplete patterns as one of its goals. In addition to allowing the
programmer to define algebraic data types, e.g.:

data [α] = [] | α :: [α]

it also allows the programmer to specify a finite number of “inter-
esting” recursive types that refine those algebraic types:

rectype [α]0 = []

rectype [α]1 = α :: []



The refinements [α]0 and [α]1 respectively select the subtypes
of empty and singleton lists from the complete list type. From these
recursive types, and using a type union operator, a finite type lattice
can be computed automatically:

[α]

[α]0 ∨ [α]1

[α]0 [α]1

⊥

The constructors of the algebraic data type in question can then
be more accurately typed in terms of intersection types over this
lattice:

[] : ∀α. [α]0

:: : ∀α.α→ [α]0 → [α]1

∧ α→ [α]1 → [α]
∧ α→ [α] → [α]

Finally, the case-construct, interpreted as a higher-order func-
tion and specialized to lists, can be given the intersection type:

∀α β1 β2. [α]0 → β1 → (α→ [α] → ⊥ )→ β1
∧ [α]1 → β1 → (α→ [α]0 → β2)→ β1 ∨ β2
∧ [α] → β1 → (α→ [α] → β2)→ β1 ∨ β2

Compared to our analysis the inference of intersection types
would make this a relational analysis, while our use of subtyp-
ing and conditional constraints only define a functional relation be-
tween input and output variables. This would seem to imply our
analysis is less precise. As the system by Freeman put some re-
strictions on recursive definitions of recursive types, it is unclear
to us if risers could be given a suitable refinement type that pre-
cludes the occurrence of pattern-match failures. Additionally, the
use of intersection types leads to a superexponential blowup of the
size of types in the number of rectype-definitions.
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A. Metatheory
A.1 Subtyping
Lemma 1. If C 
 τ1 6ι τ2 then C 
 dτ1e vι dτ2e.

Proof. By inversion of the subtype relation; the result is immediate
in all cases.

A.2 Constraints
Theorem 5 (Soundness of constraint logic). If θ � C and C 
 D
then θ � D.

Proof. By induction on the derivation of C 
 D.
Case [CL-⇒I]: We need to show that if θ � C and C 
 g ⇒ r

then θ � g ⇒ r. The induction hypothesis states that if θ � C, g
and C, g 
 r then θ � r. Our assumptions are:

θ � C (1)
C 
 g ⇒ r (2)
C, g 
 r (3)

We perform a case-split on θ � g.
Subcase “θ � g”: We can now apply the induction hypothesis

and find that

θ � r (4)

We apply [CL-⇒I] using (4) and the assumption introduced in the
subcase to obtain

θ � g ⇒ r (5)

Subcase “θ 2 g”: We can immediately apply [CL-⇒I] using the
assumption introduced in the subcase to obtain the desired result.

Case [CL-⇒E]: We need to show that if θ � C, g and C, g 
 r
then θ � r. The induction hypothesis states that if θ � C and
C 
 g ⇒ r then θ � g → r. Our assumptions are:

θ � C, g (6)
C, g 
 r (7)
C 
 g ⇒ r (8)

From (6) it follows that

θ � C (9)
θ � g (10)

We can now apply the induction hypothesis to find

θ � g ⇒ r (11)

Applying the inversion lemma to (11) reveals that the last inference
rule used in its derivation can only have been [CM-IMPL], so we
find that

θ � g ⇒ θ � r (12)

From (10) and (12) we obtain

θ � r (13)

concluding the proof.
Case [CL-∨I]: We need to show that if θ � C and C 
 g1 ∨ g2

then θ � g1 ∨ g2. The induction hypothesis states that if θ � C and
C 
 g then θ � g1. Our assumptions are:

θ � C (14)
C 
 g1 ∨ g2 (15)
C 
 g1 (16)

We can immediately apply the induction hypothesis and get

θ � g1 (17)

Applying [CM-LEFT] to (17) gives us

θ � g1 ∨ g2 (18)

concluding the proof.
Case [CL-∨C]: We need to show that if θ � C andC 
 g2 ∨ g1

then θ � g2 ∨ g1. The induction hypothesis states that if θ � C and
C 
 g1 ∨ g2 and θ � g1 ∨ g2. Our assumptions are:

θ � C (19)
C 
 g2 ∨ g1 (20)
C 
 g1 ∨ g2 (21)

We can immediately apply the induction hypothesis, giving us:

θ � g1 ∨ g2 (22)

Applying the inversion lemma to (22) reveals it can either have
been constructed by [CM-LEFT] or otherwise by [CM-RIGHT].

Subcase [CM-LEFT]: We obtain the additional assumption
θ � g1 and can apply [CM-RIGHT] to get θ � g2 ∨ g1.

Subcase [CM-RIGHT]: We obtain the additional assumption
θ � g2 and can apply [CM-LEFT] to get θ � g2 ∨ g1.

Case [CL-∃I]: We need to show that if θ � C and C 
 ∃ια
then θ � ∃ια.

The induction hypothesis states that if θ � C and C 
 Λι vι α
then θ � Λι vι α.

We can immediately apply the induction hypothesis. Inversion
on its result reveals that it can only have been constructed by
[CM-CON], giving us Λι vι θια. We can use this to apply
[CM-EXISTS], giving us the desired result.

Case [CL-∅]: We need to show that if θ � C and C 
 ∅ vι α
then θ � ∅ vι α.

From the order theoretic axioms it follows that

∅ vι θια (23)

Applying [CM-CON] to (23) gives us

θ � ∅ vι α. (24)

Case [CL-LUB]: We need to show that if θ � C andC 
 α1 t α2

then θ � α1 t α2 vι β. The induction hypotheses state that:

1. If θ � C and C 
 α1 vι β then θ � α1 vι β.
2. If θ � C and C 
 α2 vι β then θ � α2 vι β.

Our assumptions are:

θ � C (25)
C 
 α1 t α2 vι β (26)
C 
 α1 vι β (27)
C 
 α2 vι β (28)

We can immediately apply the induction hypotheses, giving us:

θ � α1 vι β (29)
θ � α2 vι β (30)

Applying the inversion lemma to both (29) and (30) reveals that
they can only have been constructed using [CM-VAR], giving us:

θια1 vι θιβ (31)
θια2 vι θιβ (32)

By order theoretic reasoning we find that

θια1 t θια2 vι θιβ (33)

As substitutions distribute over lattice operations, we also have:

θι (α1 t α2) vι θιβ (34)



Finally, we can apply [CM-VAR] to (34) to obtain

θ � α1 t α2 vι β (35)

Case [CL-WEAK]: We need to show that if θ � C1, C2 and
C1, C2 
 c then θ � c. The induction hypothesis states that if θ � c
and C1 
 c then θ � c. Our assumptions are:

θ � C1, C2 (36)
C1, C2 
 c (37)
C1 
 c (38)

From the definition of (36) it follows that

θ � C1 (39)

We can now apply the induction hypothesis and obtain

θ � c (40)

Case [CL-MP]: We need to show that if θ � C andC 
 c2 then
θ � c2. The induction hypotheses state that:

1. If θ � C and C 
 c1 then θ � c1.
2. If θ � C, c1 and C, c1 
 c2 then θ � c2.

Our assumptions are:

θ � C (41)
C 
 c1 (42)
C, c1 � c2 (43)

Applying the first induction hypothesis using (41) and (42) gives
us:

θ � c1 (44)

We can write (41) and (44) as

θ � C, c1 (45)

Applying the second induction hypothesis using (45) and (43) gives
us:

θ � c2 (46)

which is what was asked for.

A.3 Progress
Lemma 2 (Canonical forms). If v is a value with underlying type
B then v = true, v = false or v =  ` for some `. If v is a value
with underlying type Z then v = n or v =  `. If v is a value of
type τ1

α−→ τ2 then v = close λx.e in ρ or v =  `. If v is a value
of type τ1 ×α τ2 then v = close (e1, e2) in ρ or v =  `. If v is a
value of type [τ ]α then v = [], v = close e1 :: e2 in ρ or v =  `.

Proof. Recall that values can only be of the forms true, false, n,
 `, [] or close e in ρ. Except for values of the last form all cases
follow either immediately or can be discarded by inversion of the
typing relation. We thus proceed to check values of the last form.

We assumed no subexpressions of the form close e in ρ were
present in the original program, so they can only have been intro-
duced by evaluation using rules [E-ABS], [E-PAIR] or [E-CONS].
[T-CLOSE] tells us that for close e in ρ to have underlying type B
or Z, emust be of underlying type B or Z, respectively. None of the
three aforementioned evaluation rules can produce an expression of
this type. If v is of either type τ1

α−→ τ2, τ1 ×α τ2 or [τ ]α then an
expression of the form close e in ρ must have been produced by
[E-ABS], [E-PAIR] or [E-CONS], respectively. In each case e is
then of the required form.

Theorem 6 (Progress). If C; Γ ` e : σ then either e is value or
there exist an e′, such that for any ρ with C ` Γ ./ ρ we have
ρ ` e −→ e′.

Proof. By induction on the typing derivation.
Case [T-VAR]: We can make progress by applying [E-VAR].
Case [T-CON]: c is a value.
Case [T-EXN]:  ` is a value.
Case [T-ABS]: We can make progress by applying [E-ABS].
Case [T-APP]: Given C; Γ ` e1 e2 : τ1, the last of the typing

derivation must have been [T-APP] and by inversion on the typing
relation we get C; Γ ` e1 : τ2

α−→ τ1 and C; Γ ` e2 : τ2. From the
induction hypothesis it follows that either e1 is a value or e1 can
make progress. In the latter case we can make progress by applying
[E-APP]. If e1 is a value then it follows from the canonical forms
lemma that either e1 = close λx.e in ρ or e1 =  `. In the first case
we can make progress by applying [E-APPABS]. In the second case
it follows from the induction hypothesis that either e2 can make
progress or is a value. In these cases we can make progress by
applying [E-APPEXN1] or [E-APPEXN2], respectively.

Case [T-FIX]: We can make progress by applying [E-FIX].
Case [T-LET]: We can make progress by applying [E-LET].
Case [T-IF]: Given C; Γ ` if e1 then e2 else e3 : τ then it fol-

lows from the induction hypothesis that either e1 is a value or
ρ ` e1 −→ e′1. In the latter case we can make progress by apply-
ing [E-IF]. In the former case we continue by case-inspection. We
assumed that e is well-typed in the underlying type system, thus
from the canonical forms lemma if follows that either e1 = true,
e1 = false or e1 =  `. In the first two cases we can make
progress by applying [E-IFTRUE] or [E-IFFALSE], respectively. In
the third case it follows from the induction hypothesis that either
ρ ` e2 −→ e′2 or ρ ` e3 −→ e′3, or both e2 and e3 are
values. In those cases [E-IFEXN1], [E-IFEXN2] or [E-IFEXN3]
apply, respectively.

Case [T-OP]: Given C; Γ ` e1 ⊕ e2 : α, it follows from the
induction hypothesis that either at least one of e1 and e2 can make
progress or both are values. In the first case either [E-OP1] or
[E-OP2] applies. We assumed the expression was well-typed in the
underlying type system, thus in the second case if follows from
the canonical forms lemma that either ei = ni or ei =  `i
for i ∈ {1, 2}. In these cases either [E-OPNUM], [E-OPEXN1],
[E-OPEXN2] or [E-OPEXN3] applies.

Case [T-PAIR]: We can make progress by applying [E-PAIR].
Case [T-FST]: Given C; Γ ` fst e : τ1, it follows from the in-

duction hypothesis that either e can make progress or it is a value.
In the first case the whole expression can make progress by apply-
ing [E-FST]. In the second case it follows from the canonical forms
lemma that either e = close (e1, e2) in ρ or e =  `. In both cases
we can make progress by applying [E-FSTPAIR] or [E-FSTEXN],
respectively.

Case [T-SND]: As [T-FST].
Case [T-NIL]: [] is a value.
Case [T-CONS]: We can make progress by applying [E-CONS].
Case [T-CASE]: Given

C; Γ ` case e1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ ,

it follows from the induction hypothesis that either e1 is a value
or it can make progress. In the latter case we can make progress
by applying [E-CASE]. In the former case we continue by case
inspection on the values of e1. We assumed that e is well-typed in
the underlying type system, thus from the canonical forms lemma
it follows that either e1 = [], e1 = close e1 :: e2 in ρ or
e1 =  `. In the first and second case we can make progress by
applying [E-CASENIL] or [E-CASECONS], respectively. In case
e1 is an exceptional value, the induction hypothesis tells us that



either at least one of e2 and e3 can make progress, or both of
them are values. In these case we can apply [E-CASEEXN1] or
[E-CASEEXN2], or [E-CASEEXN3], respectively.

Case [T-CLOSE]: close e in ρ is a value.
Case [T-BIND]: Given C; Γ ` bind ρ in e : τ it follows from

the induction hypothesis that either e can make progress or it is
a value. In these cases we can apply [E-BIND1] or [E-BIND2],
respectively.

A.4 Preservation
Theorem 7 (Preservation). If C; Γ ` e : σ1, ρ ` e −→ e′ and
C ` Γ ./ ρ then C; Γ ` e′ : σ2 with C 
 σ2 6δχ σ1.

Proof. By induction on the reduction relation.
Case [E-VAR]: We need to show that if

D; ∆ ` x : τ

ρ, x : e ` x −→ bind ρ in e

and

C ` ∆ ./ ρ, x : e

then

C; ∆ ` bind ρ in e : τ ′

with

C 
 τ ′ 6δχ τ .

Applying the inversion lemma to D; ∆ ` x : τ reveals it can
only have been constructed using [T-VAR], giving us:

C; Γ, x : ∀α. τ with D ` x : τ
[
β/α

]
(47)

C 
 D
[
β/α

]
(48)

Thus we can take ∆ 7→ Γ, x : ∀α. τ with D and τ 7→ τ
[
β/α

]
and

show that if

C; Γ, x : ∀α. τ with D ` x : τ
[
β/α

]
ρ, x : e ` x −→ bind ρ in e

and

C ` Γ, x : ∀α. τ with D ./ ρ, x : e

then

C; Γ, x : ∀α. τ with D ` bind ρ in e : τ
[
β/α

]
with

C 
 τ
[
β/α

]
6δχ τ

[
β/α

]
.

Applying the inversion lemma to

C ` Γ, x : ∀α. τ with D ./ ρ, x : e

reveals it can only have been constructed by [EC-EXTEND], giving
us:

C ` Γ ./ ρ (49)
C; Γ ` e : ∀α. τ with D (50)

Applying [T-BIND] to (49) and (50) gives us:

C; Γ ` bind ρ in e : ∀α. τ with D (51)

Applying [T-INST] to (51) and (48) gives us:

C; Γ ` bind ρ in e : τ
[
β/α

]
(52)

We conclude the proof by noting thatC 
 τ
[
β/α

]
6δχ τ

[
β/α

]
follows from the reflexivity of the subtype relation.

Case [E-ABS]: Apply [T-CLOSE] (and note that the subtype
relation is reflexive.)

Case [E-APP]: We need to show that if C; Γ ` e1 e2 : τ12
and ρ ` e1 e2 −→ e′1 e2 then C; Γ ` e′1 e2 : τ2 with
C 
 τ2 6δχ τ12. The induction hypothesis states that if

C; Γ ` e1 : τ11
α1−−→ τ12

and

ρ ` e1 −→ e′1

then

C; Γ ` e′1 : τ21
α2−−→ τ22 (53)

with C 
 τ21
α2−−→ τ22 6δχ τ11

α1−−→ τ12, which—by inversion of
the subtyping relation—implies

C 
 τ11 6δχ τ21 (54)
C 
 τ22 6δχ τ12 (55)
C 
 α2 vδχ α1. (56)

Applying the inversion lemma to C; Γ ` e1 e2 : τ12 reveals it
can only have been constructed by [T-APP], thus we have

C; Γ ` e1 : τ11
α1−−→ τ12 (57)

C; Γ ` e2 : τ13 (58)
C 
 τ13 6δχ τ11 (59)
C 
 α1 vχ dτ12e (60)

C 
 ∃χα1 ⇒ dτ13e vχ dτ12e. (61)

We can now apply the induction hypothesis. By applying
[T-APP] with e1 7→ e′1, e2 7→ e2, τ1 7→ τ21, τ2 7→ τ12, τ3 7→ τ13
and α 7→ α1 we find that

C; Γ ` e′1 e2 : τ12.

We still need to check that the preconditions of [T-APP] hold:

1. C; Γ ` e′1 : τ21
α1−−→ τ12 follows from applying [T-SUB] to (53)

using (55) and (56).
2. C 
 τ13 6δχ τ21 follows from the transitivity of the subtyping

relation applied to (54) and (59).

The other three preconditions follow directly from (58), (60), and
(61) respectively.

To conclude the proof, we need to show that C 
 τ12 6δχ τ12,
which holds by reflexivity of the subtyping relation.

Case [E-APPABS]: We need to show that if

C; Γ ` (close λx.e1 in ρ1) e2 : τ2, (62)
C ` Γ ./ ρ (63)

and

ρ ` (close λx.e1 in ρ1) e2

−→ bind (ρ1, x : bind ρ in e2) in e1 (64)

then

C; Γ ` bind (ρ1, x : bind ρ in e2) in e1 : τ ′2 (65)

with

C 
 τ ′2 6δχ τ2. (66)



The inversion lemma reveals that the last inference rule used to
construct (62) can only have been [T-APP], giving us:

C; Γ ` close λx.e1 in ρ1 : τ1
α−→ τ2 (67)

C; Γ ` e2 : τ3 (68)
C 
 τ3 6δχ τ1 (69)
C 
 α vχ dτ2e (70)

C 
 ∃χα⇒ dτ3e vχ dτ2e (71)

Applying the inversion lemma to (67) reveals that the last in-
ference rule used in the derivation can only have been [T-CLOSE],
giving us:

C; ∆ ` λx.e1 : τ1
α−→ τ2 (72)

C; Γ ` ∆ : ρ1 (73)

Applying the inversion lemma to (72) reveals that the last infer-
ence rule used in the derivation can only have been [T-ABS], giving
us:

C; ∆, x : τ ` e1 : τ2 (74)

We construct the desired result using [T-BIND] with e 7→ e1,
τ 7→ τ2, ρ 7→ (ρ1, x : bind ρ in e2) and ∆ 7→ ∆, x : τ1. We still
need to check the preconditions on [T-BIND] hold:

1. The premise C; ∆, x : τ ` e1 : τ2 is satisfied by (74).
2. The premise C ` ∆, x : τ1 ./ ρ1, x : bind ρ in e2 can be con-

structed using [EC-EXTEND], checking its premises in turn:
(a) C ` ∆ ./ ρ1 is satisfied by (73).
(b) C; ∆ ` bind ρ in e2 : τ1 can be constructed by [T-BIND]

with Γ 7→ ∆, ∆ 7→ Γ, ρ 7→ ρ, e 7→ e2 and τ 7→ τ1;
checking its premises in turn:

i. C ` Γ ./ ρ is satisfied by (63).
ii. C; Γ ` e2 : τ1 holds by using [T-SUB] on (68) and (69).

We conclude the proof by noting that C 
 τ2 6δχ τ2 follows
from the reflexivity of the subtype relation.

Case [E-APPEXN1]: We need to show that if C; Γ `  `1 : τ1
and ρ `  `1 e2 −→  `1 e′2 thenC; Γ ` e′2 : τ2 withC 
 τ2 6δχ τ1.
The induction hypothesis states that if

C; Γ ` e2 : τ3

and
ρ ` e2 −→ e′2

then

C; Γ ` e′2 : τ4 (75)
C 
 τ4 6δχ τ3. (76)

Applying the inversion lemma to C; Γ `  `1 e2 : τ1 reveals it can
only have been constructed by [T-APP], thus we have:

C; Γ `  `1 : τ1
α−→ τ2 (77)

C; Γ ` e2 : τ3 (78)
C 
 τ3 6δχ τ1 (79)
C 
 α vχ dτ2e (80)

C 
 ∃χα⇒ dτ3e vχ dτ2e (81)

We can now apply the induction hypothesis. By applying [T-APP]
with e1 7→  `1 , e2 7→ e′2, τ1 7→ τ1, τ2 7→ τ2, τ3 7→ τ4 and α 7→ α
we find that

C; Γ `  `1 e′2 : τ2.

We still need to check that the preconditions on [T-APP] hold:

1. C 
 τ4 6δχ τ1 follows from (76), (79) and the transitivity of
the subtype relation.

2. Using implication elimination on (81) gives us:

C,∃χα 
 dτ3e vχ dτ2e (82)

Using Lemma 1 on (76) gives us:

C 
 dτ4e vδχ dτ3e (83)

Weakening (83) gives us:

C,∃χα 
 dτ4e vδχ dτ3e (84)

From (84), (82) and the transitivity of the subtype relation we
get:

C, ∃χα 
 dτ4e vχ dτ2e (85)

Using implication introduction on (85) gives us the desired
precondition:

C 
 ∃χα⇒ dτ4e vχ dτ2e (86)

The other three preconditions are fulfilled by assumptions (77),
(75) and (80). respectively.

To conclude the proof, we need to show that C 
 τ2 6δχ τ2,
which holds by the reflexivity of the subtype relation.

Case [E-APPEXN2]: We need to show that ifC; Γ `  `1 v`22 : τ12
and ρ `  `1 v`22 −→  `1t`2 then C; Γ `  `1t`2 : τ ′12 with
C 
 τ ′12 6δχ τ12.

Applying the inversion lemma to C; Γ `  `1 v`22 : τ12 reveals
it can only have been constructed by [T-APP], thus we have:

C; Γ `  `1 : τ11
α1−−→ τ12 (87)

C; Γ ` v`22 : τ13 (88)
C 
 τ13 6δχ τ11 (89)
C 
 α1 vχ dτ12e (90)

C 
 ∃χα1 ⇒ dτ13e 6χ dτ12e (91)

Applying the inversion lemma to (87) reveals it can only have been
constructed by [T-EXN], giving us:

C 
 `1 vχ dτ11
α1−−→ τ12e (92)

or, by simplification of d · e:
C 
 `1 vχ α1 (93)

When inverting (88) we have to distinguish between two cases:
either v`22 is an exceptional value and it can—by the inversion
lemma—only have been been constructed by [T-EXN], or v`22 is
a non-exceptional value and we took `2 = ∅.

Subcase “v`22 is an exceptional value”: Applying the inver-
sion lemma to (88) reveals it can only have been constructed by
[T-EXN], giving us:

C 
 `2 vχ dτ13e (94)

We use [T-EXN] to construct an exceptional value

C; Γ `  `1t`2 : τ12.

The precondition C 
 `1 t `2 vχ dτ12e can be decomposed into:

C 
 `1 vχ dτ12e (95)
C 
 `2 vχ dτ12e (96)

Precondition (95) is satisfied by transitively combining (93) with
(90). Using implication elimination on (91) using (93), we find:

C 
 dτ13e vχ dτ12e (97)

Precondition (96) is satisfied by transitively combining (94) with
(97). For this subcase we can conclude the whole proof by noting
that C 
 τ12 6δχ τ12 follows from the reflexivity of the subtype
relation.



Subcase “v`22 is a non-exceptional value”: If v`22 is a non-
exceptional value then we took `2 = ∅. We use [T-EXN] to con-
struct an exceptional value C; Γ `  `1t`2 : τ12. The precondition
C 
 `1 t ∅ vχ dτ12e can be simplified to:

C 
 `1 vχ dτ12e (98)

Precondition (98) follows from transitively combining (93) with
(90). For this subcase we can conclude the whole proof by noting
that C 
 τ12 6δχ τ12 follows from the reflexivity of the subtype
relation.

Case [E-FIX]: We need to show that if

C; Γ ` fix f. e : τ1
[
β/α

]
ρ ` fix f. e −→ bind (ρ, f : bind ρ in fix f. e) in e

and
C ` ρ ./ Γ

then

C; Γ ` bind (ρ, f : bind ρ in fix f. e) in e : τ1
[
β/α

]
with

C 
 τ1
[
β/α

]
6δχ τ1

[
β/α

]
.

Applying the inversion lemma to C; Γ ` fix f. e : τ1
[
β/α

]
re-

veals it can only have been constructed using [T-FIX], giving us:

C 
 D
[
β/α

]
(99)

D; Γ, f : ∀α. τ1 with D ` e : τ2 (100)
D 
 τ2 6δχ τ1 (101)
α ∩ fv(Γ;C) = ∅ (102)

We can now construct the desired result using [T-BIND] with
ρ 7→ (ρ, f : bind ρ in fix f. e), σ 7→ τ1

[
β/α

]
, e 7→ e and

∆ 7→ Γ, f : ∀α. τ1 with D.
We still need to check the preconditions on [T-BIND] hold:

1. Applying the substitution
[
β/α

]
to (100) gives us

D
[
β/α

]
; Γ, f : ∀α. τ1 with D

[
β/α

]
` e : τ2

[
β/α

]
(103)

However, as fv(Γ) and the domain of the substitution are dis-
joint and f quantifies over the entire domain of the substitution,
this is equivalent to

D
[
β/α

]
; Γ, f : ∀α. τ1 with D ` e : τ2

[
β/α

]
(104)

From (101) it follows that

D
[
β/α

]

 τ2

[
β/α

]
6δχ τ1

[
β/α

]
(105)

Using [T-SUB] on (104) with (105) gives us

D
[
β/α

]
; Γ, f : ∀α. τ1 with D ` e : τ2

[
β/α

]
(106)

From (107) and (99) the desired result follows:

C; Γ, f : ∀α. τ1 with D ` e : τ2
[
β/α

]
(107)

2. We can construct

C ` Γ, f : ∀α. τ1 with D ./ ρ, f : bind ρ in fix f. e

using [EC-EXTEND]. We check its preconditions:
(a) The precondition C ` Γ ./ ρ is an assumption made by the

theorem.
(b) The preconditionC; Γ ` bind ρ in fix f. e : ∀α. τ1 with D

can be constructed using [T-BIND] with ∆ 7→ Γ. We check
its preconditions:

i. The precondition C ` Γ ./ ρ is an assumption made by
the theorem.

ii. The precondition C; Γ ` fix f. e : ∀α. τ1 with D can
be constructed by [T-GEN]. We check its preconditions:

A. The precondition α∩ fv(Γ;C) is satisfied by (102).
B. The precondition C,D; Γ ` fix f. e : τ1 can be con-

structed using [T-FIX] with C 7→ C,D and β 7→ α.

Case [E-LET]: We need to show that if

C; Γ ` let x = e1 in e2 : τ2 (108)
C ` Γ ./ ρ (109)

and

ρ ` let x = e1 in e2
−→ bind (ρ, x : bind ρ in e1) in e2 (110)

then

C; Γ ` bind (ρ, x : bind ρ in e1) in e2 : τ ′2 (111)

with

C 
 τ ′2 6δχ τ . (112)

Applying the inversion lemma to (108) reveals that the last
inference rule used in its derivation can only have been [T-LET],
giving us:

C,D; Γ ` e1 : τ1 (113)
C; Γ, x : ∀α. τ1 with D ` e2 : τ2 (114)

α ∩ fv(Γ;C) = ∅ (115)

We construct the desired result using [T-BIND] with τ 7→
τ2; e 7→ e2; ρ 7→ (ρ, x : bind ρ in e1) and ∆ 7→ Γ, x :
∀α. τ1 with D. We still need to check the preconditions on
[T-BIND]:

1. The premiseC; Γ,∀α. τ1 with D ` e2 : τ2 is satisfied by (114).
2. The premise C ` Γ, x : ∀α. τ1 with D ./ ρ, x : bind ρ in e1

can be constructed by [EC-EXTEND]. We check its precondi-
tions:
(a) The premise C ` Γ ./ ρ follows from the assumption made

by the theorem.
(b) The premise C; Γ ` bind ρ in e1 : ∀α. τ1 with D can be

constructed by [T-GEN]. We check its preconditions:
i. The premise α ∩ fv(Γ;C) is satisfied by (115).

ii. The premise C,D; Γ ` bind ρ in e1 : τ1 can be con-
structed by [T-BIND] with ρ 7→ ρ, e 7→ e1, ∆ 7→ Γ,
τ 7→ τ1 and C 7→ C,D. We check its preconditions:
A. The premise C,D; Γ ` e1 : τ1 is satisfied by (113).
B. The premise C,D ` Γ ./ ρ is satisfied by weaken-

ing the assumption made by the theorem

We conclude the proof by noting that C 
 τ2 6δχ τ2 follows
from the reflexivity of the subtype relation.

Case [E-IF]: We need to show that if

C; Γ ` if e1 then e2 else e3 : τ (116)

and

ρ ` if e1 then e2 else e3 −→ if e′1 then e2 else e3 (117)

then C; Γ ` if e′1 then e2 else e3 : τ ′ with C 
 τ ′ 6δχ τ .
The induction hypothesis states that if C; Γ ` e1 : α1 and

ρ ` e1 −→ e′1 then C; Γ ` e′1 : α′1 with C 
 α′1 6δχ α1.



Applying the inversion lemma to (116) reveals it can only have
been constructed by [T-IF], giving us:

C; Γ ` e1 : α1 (118)
C; Γ ` e2 : τ2 (119)
C; Γ ` e3 : τ3 (120)

C 
 T vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (121)
C 
 F vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (122)

C 
 α1 vχ dτe (123)

We can now apply the induction hypothesis, giving us:

C; Γ ` e′1 : α′1 (124)

C 
 α′1 6δχ α1 (125)

Using the inversion lemma on (125) reveals it can only have been
constructed by

C 
 α′1 vδχ α1 (126)

We can construct the desired result using [T-IF] with e1 7→ e1.
We still need to check that the preconditions on [T-IF] hold:

1. Applying [T-SUB] with (124) and (126) gives usC; Γ ` e′1 : α1.

The other five preconditions follow immediately from (119)–(123).
Case [E-IFTRUE]: We need to show that if

C; Γ ` if true then e2 else e3 : τ

and
ρ ` if true then e2 else e3 −→ e2

then
C; Γ ` e2 : τ ′

with
C 
 τ ′ 6δχ τ .

Applying the inversion lemma toC; Γ ` if true then e2 else e3 : τ
reveals it can only have been constructed by [T-IF], thus we have:

C; Γ ` true : α1 (127)
C; Γ ` e2 : τ2 (128)
C; Γ ` e3 : τ3 (129)

C 
 T vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (130)
C 
 F vχ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (131)

C 
 α1 vχ dτe (132)

Applying the inversion lemma to (127) reveals it can only have
been constructed using [T-CON], giving us:

C 
 ι(true) vδ α1, (133)

which is equivalent to

C 
 T vδ α1. (134)

Using ∨-introduction on (134) and implication elimination on
(130) we find

C 
 T vδ α1 ∨ ∃χα1 (135)
C,T vδ α1 ∨ ∃χα1 
 τ2 6δχ τ (136)

Applying the modus ponens rules on (135) and (136) gives us

C 
 τ2 6δχ τ (137)

This concludes the proof, as (128) and (137) are what was asked
for.

Case [E-IFFALSE]: As [E-IFTRUE].
Case [E-IFEXN1]: We need to show that if

C; Γ ` if  `1 then e2 else e3 : τ

and

ρ ` if  `1 then e2 else e3 −→ if  `1 then e′2 else e3

then

C; Γ ` if  `1 then e′2 else e3 : τ ′

with

C 
 τ ′ 6δχ τ .

The induction hypothesis states that if C; Γ ` e2 : τ2 and
ρ ` e2 −→ e′2 then C; Γ ` e′2 : τ ′2 with C 
 τ ′2 6δχ τ2.

Applying the inversion lemma toC; Γ ` if  `1 then e2 else e3 : τ
reveals it can only have been constructed by [T-IF], giving us:

C; Γ `  `1 : α1 (138)
C; Γ ` e2 : τ2 (139)
C; Γ ` e3 : τ3 (140)

C 
 T vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (141)
C 
 F vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (142)

C 
 α1 vχ dτe (143)

We can now apply the induction hypothesis, giving us:

C; Γ ` e′2 : τ ′2 (144)

C 
 τ ′2 6δχ τ2 (145)

By applying [T-IF] with α1 7→ α1, τ2 7→ τ ′2, τ3 7→ τ3,
e1 7→  `1 , e2 7→ e′2 and e3 7→ e3 we find that

C; Γ ` if  `1 then e′2 else e3 : τ (146)

We still need to check that the preconditions on [T-IF] hold:

1. Using weakening on (145) we get

C,T vδ α1 ∨ ∃χα1 
 τ
′
2 6δχ τ2 (147)

Using implication elimination on (141) we get

C,T vδ α1 ∨ ∃χα1 
 τ2 6δχ τ (148)

Using the transitivity of the subtype relation on (147) and (148)
we get

C,T vδ α1 ∨ ∃χα1 
 τ
′
2 6δχ τ (149)

Using implication introduction on (149) get

C 
 T vδ α1 ∨ ∃χα1 ⇒ τ ′2 6δχ τ (150)

The other five preconditions follow directly from (138), (140),
(142), (143) and (144). This—together with the reflexivity of the
subtype relation giving us C 
 τ 6δχ τ—concludes the proof.

Case [E-IFEXN2]: As [E-IFEXN1].
Case [E-IFEXN3]: We need to show that if

C; Γ ` if  `1 then v`22 else v`33 : τ

and

ρ ` if  `1 then v`22 else v`33 −→  `1t`2t`3

then

C; Γ `  `1t`2t`3 : τ

with

C 
 τ 6δχ τ .



Applying the inversion lemma toC; Γ ` if  `1 then v`22 else v`33 : τ
reveals it can only have been constructed by [T-IF], thus we have:

C; Γ `  `1 : α1 (151)

C; Γ ` v`22 : τ2 (152)

C; Γ ` v`33 : τ3 (153)
C 
 T vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (154)
C 
 F vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (155)

C 
 α1 vχ dτe (156)

We construct a new exceptional value C; Γ `  `1t`2t`3 : τ
using [T-EXN]. This gives us the precondition

`1 t `2 t `3 vχ α1 (157)

that we need to check it satisfied. It can be decomposed into

C 
 `1 vχ α1 (158)
C 
 `2 vχ α1 (159)
C 
 `3 vχ α1 (160)

1. (158) follows from applying the inversion lemma to (151).
2. (159) follows from case inspection on v`22 : either v`22 is an

exceptional value and must thus have been constructed by
[T-EXN], from which the requested constraint follows imme-
diately by inversion of (152); or v`22 is a non-exceptional value
and we took `2 = ∅, which simplifies (159) to the trivially
satisfied C 
 ∅ vχ α1.

3. The reasoning for (160) if analogous to (159).

We conclude the proof by noting that C 
 τ 6δχ τ follows
from the reflexivity of the subtype relation.

Case [E-OP1]: We need to show that if C; Γ ` e1 ⊕ e2 : α
and ρ ` e1 ⊕ e2 −→ e′1 ⊕ e2 then C; Γ ` e′1 ⊕ e2 : α′ with
C 
 α′ vδχ α. The induction hypothesis states that ifC; Γ ` e1 : α1

and ρ ` e1 −→ e′1 then

C; Γ ` e′1 : α′1 (161)

C 
 α′1 vδχ α1. (162)

Applying the inversion lemma to C; Γ ` e1 ⊕ e2 : α1 can only
have been constructed by [T-OP], thus we have

C; Γ ` e1 : α1 (163)
C; Γ ` e2 : α2 (164)
C 
 α1 vχ α (165)
C 
 α2 vχ α (166)

C 
 ω⊕(α1, α2, α) (167)

Applying [T-OP] with e1 7→ e′1, e2 7→ e2, α1 7→ α′1, α2 7→ α2

and α 7→ α we find that

C; Γ ` e′1 ⊕ e2 : α.

We still need to check that the preconditions of [T-OP] hold:

1. C 
 α′1 vχ α follows from (165), (162) and the transitivity of
the subtype relation.

2. C 
 ω⊕(α′1, α2, α) follows from (162) and the monotonicity
of the operator constraint set ω⊕ (Definition 2).

The other three preconditions follow directly from assumptions
(161), (164) and (166), respectively.

To conclude the proof, we need to show that C 
 α vδχ α,
which holds by the the reflexivity of the subtype relation.

Case [E-OP2]: As [E-OP1].

Case [E-OPNUM]: We need to show that ifC; Γ ` n1 ⊕ n2 : α
and ρ ` n1⊕n2 −→ Jn1⊕n2K thenC; Γ ` Jn1 ⊕ n2K : α′ with
C 
 α′ 6δχ α. Applying the inversion lemma toC; Γ ` n1 ⊕ n2 : α
can only have been constructed by [T-OP], thus we have

C; Γ ` n1 : α1 (168)
C; Γ ` n2 : α2 (169)
C 
 α1 vχ α (170)
C 
 α2 vχ α (171)

C 
 ω⊕(α1, α2, α) (172)

From the consistency (Definition 1) of the operator constraint set
ω⊕ and assumption (172) we conclude that

C; Γ ` Jn1 ⊕ n2K : α′ (173)

C 
 α′ 6δχ α (174)

This finishes the proof.
Case [E-OPEXN1]: We need to show that ifC; Γ `  `1 ⊕ n2 : α

and ρ `  `1 ⊕ n2 −→  `1 then C; Γ `  `1 : α′ with
C 
 α′ 6δχ α.

Applying the inversion lemma to C; Γ `  `1 ⊕ n2 : α reveals
it can only have been constructed by [T-OP], thus we have

C; Γ `  `1 : α1 (175)
C; Γ ` n2 : α2 (176)
C 
 α1 vχ α (177)
C 
 α2 vχ α (178)

C 
 ω⊕(α1, α2, α) (179)

Applying the inversion lemma to (175) reveals it can only have
been constructed by [T-EXN], giving us

C 
 `1 vχ α1 (180)

Applying [T-EXN] with ` 7→ `1 and τ 7→ α, noting that its
precondition is fulfilled by transitively combining (180) with (177),
we find that

C; Γ `  `1 : α (181)

To conclude the proof we note that C 
 α 6δχ α follows from the
transitivity of the subtype relation.

Case [E-OPEXN2]: As [E-OPEXN1].
Case [E-OPEXN3]: We need to show that ifC; Γ `  `1 ⊕  `2 : α

and ρ `  `1 ⊕  `2 −→  `1t`2 then C; Γ `  `1t`2 : α′ with
C 
 α′ vδχ α.

Applying the inversion lemma to C; Γ `  `1 ⊕  `2 : α reveals
it can only have been constructed by [T-OP], thus we have

C; Γ `  `1 : α1 (182)

C; Γ `  `2 : α2 (183)
C 
 α1 vχ α (184)
C 
 α2 vχ α (185)

C 
 ω⊕(α1, α2, α) (186)

The inversion lemma shows that the last derivation rule used to
construct both (182) and (183) can only have been [T-EXN], giving
us

C 
 `1 vχ dα1e (187)
C 
 `2 vχ dα2e (188)

Transitively combining (184) with (187) and (185) with (188), we
find

C 
 `1 t `2 vχ α (189)



Finally, we construct C; Γ `  `1t`2 : α by [T-EXN] using (189)
to fulfil its precondition and conclude by noting that C 
 α vδχ α
follows from the reflexivity of the subtype relation.

Case [E-PAIR]: Apply [T-CLOSE] (and note that the subtype
relation is reflexive.)

Case [E-CONS]: Apply [T-CLOSE] (and note that the subtype
relation is reflexive.)

Case [E-FST]: We need to show that if

C; Γ ` fst e : τ

C ` Γ ./ ρ

and
ρ ` fst e −→ fst e′

then
C; Γ ` fst e′ : τ ′

with
C 
 τ ′ 6δχ τ .

The induction hypothesis states that if

C; Γ ` e : τ1 ×α τ2

C ` Γ ./ ρ

and

ρ ` e −→ e′

then

C; Γ ` e′ : τ ′1 ×α′
τ ′2 (190)

with C 
 τ ′1 ×α′
τ ′2 6δχ τ1 ×α τ2, which—by inversion of the

subtyping relation—entails:

C 
 τ ′1 6δχ τ1 (191)

C 
 τ ′2 6δχ τ2 (192)

C 
 α′ vδχ α (193)

Applying the inversion lemma to C; Γ ` fst e : τ1 reveals it can
only have been constructed by [T-FST], thus we have

C; Γ ` e : τ1 ×α τ2 (194)
C 
 τ1 6δχ τ (195)
C 
 α vχ dτe (196)

We can now apply the induction hypothesis. By applying [T-FST]
with e 7→ e′, τ 7→ τ , τ1 7→ τ ′1, τ2 7→ τ ′2 and α 7→ α′ we find that

C; Γ ` fst e′ : τ .

We still need to check that the preconditions on [T-FST] hold:

1. C; Γ ` e′ : τ ′1 ×α′
τ ′2 follows from (121).

2. C 
 τ ′1 6δχ τ follows from (191), (195) and the transitivity of
the subtype relation.

3. C 
 α′ vχ dτe follows from (193), (196) and the transitivity
of the subeffect relation.

Case [E-FSTPAIR]: The last three inference rules used in the
derivation of C; Γ ` fst (close (e1, e2) in ρ1) : τ1 must have
been [T-FST], [T-CLOSE] and [T-PAIR]. By inversion we find that:

C; ∆ ` e1 : τ1 (197)
C; ∆ ` e2 : τ2 (198)
C 
 τ1 6δχ τ (199)
C 
 α vχ dτe (200)
C ` ∆ ./ ρ1 (201)

Applying [T-BIND] with e 7→ e1, σ 7→ τ1 and ρ 7→ ρ1 gives
usC; Γ ` bind ρ1 in e1 : τ1, with its preconditions following from
(201) and (197) C 
 τ1 6δχ τ follows from (199).

Case [E-FSTEXN]: The last two inference rules used in the
derivation of C; Γ ` fst  ` : τ1 must have been [T-FST] and
[T-EXN]. By inversion be find that:

C; Γ `  ` : τ1 ×α τ2 (202)
C 
 τ1 6δχ τ (203)
C 
 α vχ dτe (204)

C 
 ` vχ dτ1 ×α τ2e (205)

We can simplify (205) to C 
 ` vχ α and transitively combine it
with (204) to obtain:

C 
 ` vχ dτe (206)

We finish the proof by applying [T-EXN] with τ 7→ τ , noting
that its precondition is satisfied by (206) and C 
 τ 6δχ τ follows
from the reflexivity of the subtype relation.

Case [E-SND]: As [E-FST].
Case [E-SNDPAIR]: As [E-FSTPAIR].
Case [E-SNDEXN]: As [E-FSTEXN].
Case [E-CASE]: We need to show that if

C; Γ ` case e1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ (207)
C ` Γ ./ ρ (208)

and

ρ ` case e1 of {[] 7→ e2;x1 :: x2 7→ e3}
−→ case e′1 of {[] 7→ e2;x1 :: x2 7→ e3} (209)

then

C; Γ ` case e′1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ ′ (210)

with

C 
 τ ′ 6δχ τ . (211)

The induction hypothesis states that if C; Γ ` e1 : [τ1]
α1 ,

C ` Γ ./ ρ and ρ ` e1 −→ e′1 then C; Γ ` e′1 : [τ ′1]
α′
1 with

C 
 [τ ′1]
α′
1 6δχ [τ1]

α1 .
Applying the inversion lemma to (207) reveals that it can only

have been constructed by [T-CASE], thus we have:

C; Γ ` e1 : [τ1]
α1 (212)

C; Γ ` e2 : τ2 (213)

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3 (214)

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (215)
C 
 C vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (216)

C 
 α1 vχ dτe (217)
C 
 N t C vδ β (218)
C 
 α1 vχ β (219)

We can now apply the induction hypothesis, giving us

C; Γ ` e′1 :
[
τ ′1
]α′

1 (220)

C 

[
τ ′1
]α′

1 6δχ [τ1]
α1 (221)

We construct the desired result using [T-CASE] with e1 7→ e′1
and verify that all the premises hold:

1. Invoking [T-SUB] using (220) and (221) gives us

C; Γ ` e′1 : [τ1]
α1 .



All other cases follow immediately from (213)–(219).
Case [E-CASENIL]: We need to show that if

C; Γ ` case [] of {[] 7→ e2;x1 :: x2 7→ e3} : τ (222)

and ρ ` case [] of {[] 7→ e2;x1 :: x2 7→ e3} −→ e2 then
C; Γ ` e2 : τ ′ with C 
 τ ′ 6δχ τ .

Applying the inversion lemma to (222) reveals it can only have
been constructed by [T-CASE], thus we have

C; Γ ` [] : [τ1]
α1 (223)

C; Γ ` e2 : τ2 (224)

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3 (225)

C 
 N vδ α1 ∨ ∃χ ⇒ α1τ2 6δχ τ (226)
C 
 C vδ α1 ∨ ∃χ ⇒ α1τ3 6δχ τ (227)

C 
 α1 vχ dτe (228)
C 
 N t C vδ β (229)
C 
 α1 vχ β (230)

Applying the inversion lemma to (223) reveals it can only have
been constructed by [T-NIL], giving us:

C 
 N vδ α1 (231)

Using ∨-introduction on (231) gives us

C 
 N vδ α1 ∨ ∃χα1 (232)

Using implication elimination on (226) gives us

C,N vδ α1 ∨ ∃χα1 
 τ2 6δχ τ (233)

Using modus ponens on (232) and (233) gives us

C 
 τ2 6δχ τ (234)

which—together with (225)—concludes the proof.
Case [E-CASECONS]: We need to show that if

C; Γ ` case
(
close e1 :: e′1 in ρ1

)
of

{[] 7→ e2;x1 :: x2 7→ e3} : τ (235)

C ` Γ ./ ρ (236)

and

ρ ` case
(
close e1 :: e′1 in ρ1

)
of {[] 7→ e2;x1 :: x2 7→ e3}

−→ bind
(
ρ, x1 : bind ρ1 in e1, x2 : bind ρ1 in e′1

)
in e3

then

C; Γ ` bind
(
ρ, x1 : bind ρ1 in e1, x2 : bind ρ1 in e′1

)
in e3 : τ ′

with

C 
 τ ′ 6δχ τ .

Applying the inversion lemma to (235) reveals that the last
inference rule used in its derivation can only have been [T-CASE],
giving us:

C; Γ ` close e1 :: e′1 in ρ1 : [τ1]
β (237)

C; Γ ` e2 : τ2 (238)

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3 (239)

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (240)
C 
 C vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (241)

C 
 α1 vχ dτe (242)
C 
 N t C vδ β (243)
C 
 α1 vχ β (244)

Applying the inversion lemma to (237) reveals that the last
inference rule used in its derivation can only have been [T-CLOSE],
giving us:

C; ∆ ` e1 :: e′1 : [τ1]
α1 (245)

C ` ∆ ./ ρ1 (246)

Applying the inversion lemma to (245) reveals that the last
inference rules used in its derivation can only have been [T-CONS],
giving us:

C; ∆ ` e1 : τ11 (247)

C; ∆ ` e′1 : [τ12]
α12 (248)

C 
 τ11 6δχ τ1 (249)
C 
 τ12 6δχ τ1 (250)
C 
 C vδ α1 (251)
C 
 α12 vχ α1 (252)

We construct the desired result using [T-BIND] with e 7→ e3;
τ 7→ τ ; ρ 7→ (ρ, x1 : bind ρ1 in e1, x2 : bind ρ1 in e′1) and
∆ 7→ Γ, x1 : τ1, x2 : [τ1]

β . We still need to verify all the precon-
ditions on [T-BIND] are satisfied:

1. Using ∨-introduction on (251) gives us:

C 
 C vδ α1 ∨ ∃χα1 (253)

Using implication elimination on (241) gives us:

C,C vδ α1 ∨ ∃χα1 
 τ3 6δχ τ (254)

Using modus ponens on (253) and (254) gives us:

C 
 τ3 6δχ τ (255)

Applying [T-SUB] to (239) and (257) gives us the first premise:

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ .

2. The premise

C ` Γ, x1 : τ1, x2 : [τ1]
β

./ ρ, x1 : bind ρ1 in e1, x2 : bind ρ1 in e′1 (256)

can be constructed by applying [EC-EXTEND] twice. We verify
that their preconditions hold:
(a) The premise C ` Γ ./ ρ is an assumption given by the

theorem.
(b) The premise C; Γ ` bind ρ1 in e1 : τ1 can be constructed

by [T-BIND] with e 7→ e1, ρ 7→ ρ1, τ 7→ τ1 and ∆ 7→ ∆.
We need to check its preconditions:

i. The premise C ` ∆ ./ ρ1 is satisfied by (246).
ii. The premise C; ∆ ` e1 : τ1 can be constructed by ap-

plying [T-SUB] to (247) and (249).
(c) The premise C; Γ ` bind ρ1 in e′1 : τ1 can be constructed

by [T-BIND] with e 7→ e′1, ρ 7→ ρ1, τ 7→ τ1 and ∆ 7→ ∆.
We need to check its preconditions:

i. The premise C ` ∆ ./ ρ1 is satisfied by (246).
ii. From [CL->] we get

α12 vδ N t C (257)

From (257), (243) and the reflexivity of the subeffecting
relation it follows that

α12 vδ β (258)

From (252), (244) and the transitivity of the subeffecting
relation it follows that

α12 vχ β (259)



We construct the desired premise ∆ ` e′1 : [τ1]
β by ap-

plying [T-SUB] to (248) using (250), (258) and (259).

We conclude the proof by noting that C 
 τ 6δχ τ follows
from the reflexivity of the subtype relation.

Case [E-CASEEXN1]: We need to show that if

C; Γ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ (260)

and

ρ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3}
−→ case  `1 of

{
[] 7→ e′2;x1 :: x2 7→ e3

}
(261)

then

C; Γ ` case  `1 of
{
[] 7→ e′2;x1 :: x2 7→ e3

}
: τ ′ (262)

with

C 
 τ ′ 6δχ τ . (263)

The induction hypothesis states that if C; Γ ` e2 : τ2 and
ρ ` e2 −→ e′2 then C; Γ ` e′2 : τ ′2 with C 
 τ ′2 6δχ τ2.

Applying the inversion lemma to (260) reveals it can only have
been constructed by [T-CASE], thus we have

C; Γ `  `1 : [τ1]
α1 (264)

C; Γ ` e2 : τ2 (265)

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3 (266)

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (267)
C 
 C vχ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (268)

C 
 α1 vχ dτe (269)
C 
 N t C vδ β (270)
C 
 α1 vχ β (271)

We can now apply the induction hypothesis, giving us:

C; Γ ` e′2 : τ ′2 (272)

C 
 τ ′2 6δχ τ2 (273)

Applying the inversion lemma to (264) reveals it can only have
been constructed by [T-EXN], giving us:

C 
 `1 vχ d[τ1]α1e (274)

which, by simplification of d · e, equals

C 
 `1 vχ α1 (275)

Using ∃-introduction on (275) gives us

C 
 ∃χα1 (276)

Using ∨-introduction on (276) gives us

C 
 N vδ α1 ∨ ∃χα1 (277)

Applying [T-CASE] with e1 7→  `1 , e2 7→ e′2, e3 7→ e3,
x1 7→ x1, x2 7→ x2, τ 7→ τ , τ1 7→ τ1, τ2 7→ τ ′2, τ3 7→ τ3,
α1 7→ α1 and β 7→ β we find:

C; Γ ` case  `1 of
{
[] 7→ e′2;x1 :: x2 7→ e3

}
: τ (278)

We still need to check that the preconditions on [T-CASE] hold:

1. Using implication elimination on (267) gives us:

C,N vδ α1 ∨ ∃χα1 
 τ2 6δχ τ (279)

Using modus ponens on (277) and (279) gives us:

C 
 τ2 6δχ τ (280)

From (273), (280) and the transitivity of the subtype relation it
follows that:

C 
 τ ′2 6δχ τ (281)

Using weakening and implication introduction on (281) gives
us:

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ ′2 6δχ τ (282)

which is what was asked for.

The other seven preconditions follow immediately from (264),
(272), (266), (268), (269), (270) and (271).

We conclude the proof using (278) and noting thatC 
 τ 6δχ τ
follows from the reflexivity of the subtype relation.

Case [E-CASEEXN2]: We need to show that if

C; Γ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ , (283)
C ` Γ ./ ρ (284)

and

ρ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3}
−→ case  `1 of

{
[] 7→ e2;x1 :: x2 7→ e′3

}
(285)

then

C; Γ ` case  `1 of {[] 7→ e2;x1 :: x2 7→ e3} : τ (286)

with

C 
 τ 6δχ τ . (287)

The induction hypothesis states that if

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3, (288)

C ` Γ, x1 : τ1, x2 : τ2 ./ ρ, x1 :  ∅, x2 :  ∅ (289)

and

ρ, x1 :  ∅, x3 :  ∅ ` e3 −→ e′3 (290)

then

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ ′3 (291)

with

C 
 τ ′3 6δχ τ3. (292)

Applying the inversion lemma to (283) reveals that the last rule
used to construct it can only have been [T-CASE], giving us:

C; Γ `  `1 : [τ1]
α1 (293)

C; Γ ` e2 : τ2 (294)

C; Γ, x1 : τ1, x2 : [τ1]
β ` e3 : τ3 (295)

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (296)
C 
 C vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (297)

C 
 α1 vχ dτe (298)
C 
 N t C vδ β (299)
C 
 α1 vχ β (300)

If we can show that

C; Γ `  ∅ : τ1 (301)

C; Γ, x1 : τ1 `  ∅ : [τ1]
β (302)

then we can apply [EC-EXTEND] twice to (284) in order to get

C ` Γ, x1 : τ1, x2 : [τ1]
β ./ ρ, x1 :  ∅, x2 :  ∅. (303)

Both (301) and (302) can be constructed using [T-EXN] as their
premises C 
 ∅ vχ dτ1e and C 
 ∅ vχ β follow immediately
from [CL-∅].



We can now apply the induction hypothesis using (295), (303)
and the premise on [E-CASEEXN2]. We can construct (286) using
[T-CASE] with e1 7→  `1 , e3 7→ e′3 and τ3 7→ τ ′3. We still need to
show that its premises are satisfied, though:

1. Using weakening on (292), we get

C,C vδ α1 ∨ ∃χα1 
 τ
′
3 6δχ τ3. (304)

Using implication eliminiation on (297), we get

C,C vδ α1 ∨ ∃δα1 
 τ3 6δχ τ . (305)

From (304), (305) and the transitivity of the subtype relation it
follows that

C,C vδ α1 ∨ ∃δα1 
 τ3 6δχ τ . (306)

Using implication introduction on (306), we obtain the premise

C 
 C vδ α1 ∨ ∃δα1 ⇒ τ3 6δχ τ .

The other seven premises follow directly from (291), (293), (294),
(296), (298), (299) and (300).

Finally, we observe that (287) follows from the reflexivity of the
subtype relation, concluding the proof.

Case [E-CASEEXN3]: We need to show that if

C; Γ ` case  `1 of
{
[] 7→ v`22 ;x1 :: x2 7→ v`33

}
: τ (307)

and ρ ` case  `1 of
{
[] 7→ v`22 ;x1 :: x2 7→ v`33

}
−→  `1t`2t`3

then C; Γ `  `1t`2t`3 : τ ′ with C 
 τ ′ 6δχ τ .
Applying the inversion lemma to (307) reveals that it can only

have been constructed by [T-CASE], thus we have:

C; Γ `  `1 : [τ1]
α1 (308)

C; Γ ` v`22 : τ2 (309)

C; Γ, x1 : τ1, x2 : [τ1]
β ` v`33 : τ3 (310)

C 
 N vδ α1 ∨ ∃χα1 ⇒ τ2 6δχ τ (311)
C 
 C vδ α1 ∨ ∃χα1 ⇒ τ3 6δχ τ (312)

C 
 α1 vχ dτe (313)
C 
 N t C vδ β (314)
C 
 α1 vχ β (315)

Applying the inversion lemma to (308) reveals it can only have
been constructed by [T-EXN], giving us:

C 
 `1 vχ d[τ1]α1e (316)

which, after simplification of d · e, is equivalent to

C 
 `1 vχ α1. (317)

Using ∨-introduction on (317) gives us:

C 
 N vδ α1 ∨ ∃χα1 (318)
C 
 C vδ α1 ∨ ∃χα1 (319)

Using implication elimination and modus ponens on both (311) and
(318), and, (312) and (319) gives us:

C 
 τ2 6δχ τ (320)
C 
 τ3 6δχ τ (321)

We construct—using [T-EXN]—an exceptional value

C; Γ `  `1t`2t`3 : τ (322)

which needs as a precondition that

C 
 `1 t `2 t `3 vχ dτe (323)

This precondition can be decomposed into

C 
 `1 vχ dτe (324)
C 
 `2 vχ dτe (325)
C 
 `3 vχ dτe (326)

1. (324) follows (316), (313) and the transitivity of the subtype
relation.

2. (325) follows by case analysis on v`22 : if v`22 is an exceptional
value then the inversion lemma reveals (309) must have been
constructed by [T-EXN] and we have

C 
 `2 vχ dτ2e (327)

Applying Lemma 1 to (320) we get:

C 
 dτ2e vδχ dτe (328)

Using the transitivity of the subtype relation on (327) and (328)
gives us the result we were asked for.

3. The reasoning for (326) is analogous to (325).

Case [E-BIND1]: We need to show that if

C; Γ ` bind ρ1 in e1 : σ1

and
ρ ` bind ρ1 in e1 −→ bind ρ1 in e′1

then C; Γ ` bind ρ1 in e′1 : σ2 with C 
 σ2 6δχ σ1. The induc-
tion hypothesis states that if C; Γ ` e1 : σ1 and ρ ` e1 −→ e′1
then C; Γ ` e′1 : σ2 with C 
 σ2 6δχ σ1. Applying the inversion
lemma to C; Γ ` bind ρ1 in e1 : σ1 reveals it can only have been
constructed by [T-BIND], thus we have

C; ∆ ` e1 : σ1 (329)
C ` ∆ ./ ρ1 (330)

Applying the induction hypothesis we get

C; Γ ` e′1 : σ2 (331)
C 
 σ2 6δχ σ1 (332)

Applying [T-BIND] with e1 7→ e′1 and σ1 7→ σ2 we find
that C; Γ ` bind ρ1 in e′1 : σ2 with C 
 σ2 6δχ σ1. The precon-
ditions on [T-BIND] follow immediately from (331) and (330).

Case [E-BIND2]: We need to show that if

C; Γ ` bind ρ1 in v`11 : σ1

and ρ ` bind ρ1 in v`11 −→ v`11 then C; Γ ` v`11 : σ2 with
C 
 σ2 6δχ σ1.

Applying the inversion lemma to C; Γ ` bind ρ1 in v`11 : σ1

reveals it can only have been constructed by [T-BIND], thus we
have C; Γ ` v`11 : σ1, with C 
 σ1 6δχ σ1 following from the
reflexivity of the subtype relation.
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