
Higher-Ranked Exception Types

Ruud Koot
Department of Computing and Information Sciences, Utrecht University

September 2014

Exception Types
I In Haskell “types do not lie”:

IFunctions behave as mathematical function on the
domain and range given by their type

ISide-effects are made explicit by monadic types
IExceptions that may be raised are not captured in

the type
IWe would like them to be during program verification
IAdding exception types to Haskell is more complicated

than in a strict first-order language

Exception Types in Haskell
IException types in Haskell can get complicated

because of:
Higher-order functionsExceptions raised by

higher-order functions depend on the
exceptions raised by functional arguments.

Non-strict evaluationExceptions are not a form
of control flow, but are values that can be
embedded inside other values.

IAn exception-annotated type for map would be:
map : ∀α β e1 e2 e3 e4.

(αe1
e3−→ β(e1 ∪ e2))

∅−→ [αe1]e4
∅−→ [β(e1 ∪ e2 ∪ e3)]e4

map = λf .λxs. case xs of
[] 7→ []
(y : ys) 7→ f y : map f ys

Precise Exception Types
IThe exception type above is not a precise as we

would like
map id : [αe1]e4 → [αe1]e4

map (const ⊥E) : [αe1]e4 → [β(e1 ∪ {E})]e4

IA more appropriate type for map (const ⊥E)
would be:
map (const ⊥E) : [αe1]e4 → [β{E}]e4

IExceptional elements in the input list cannot be
propagated to the output.

Higher-Ranked Exception Types
IThe problem is that we have already committed

the first argument of map to be of type

αe1
e3−→ β(e1 ∪ e2)

I It always propagates exceptional values from the
input to the output

IThe solution is to move from Hindley–Milner to
System Fω, introducing higher-ranked exception
types and exception operators

map : ∀e2 e3.(∀e1.αe1
e3−→ β(e2 e1))

→ (∀e4 e5.[αe4]e5 → [β(e2 e4 ∪ e3)]e5)

id : ∀e.αe ∅−→ αe

const ⊥E : ∀e.αe ∅−→ β{E}

IThis gives us the desired exception types:
map id : ∀e4 e5.[αe4]e5 → [αe4]e5

map (const ⊥E) : ∀e4 e5.[αe4]e5 → [β{E}]e5

Exception Type Inference
IHigher-ranked exception types are syntactically

heavy; we need type inference
IType inference is undecidable in System Fω, but

exception types piggyback on an underlying type
IHoldermans and Hage (2010) show that type

inference is decidable for a similar higher-ranked
annotated type system with type operators

Work-in-Progress
Imprecise exception semanticsHaskell has an

imprecise exception semantics
INeeded for soundness of various program

transformations in an optimizing compiler
INot adequately captured by ACI1 constraints;

attempt to use equational unification in
Boolean rings instead

MetatheoryIs the combined rewrite system of
STLC and BR still confluent and normalizing?
INeeded for decidable exception type equality
IHope to use a general result by Breazu-Tannen

