Higher-Ranked Exception Types

Ruud Koot

Department of Computing and Information Sciences, Utrecht University

September 2014

Exception lypes
» In Haskell “types do not lie”:

» Functions behave as mathematical function on the
domain and range given by their type
» Side-etfects are made explicit by monadic types
» Exceptions that may be raised are not captured in
the type
» We would like them to be during program verification

» Adding exception types to Haskell is more complicated
than in a strict first-order language

Exception Types in Haskell

» Exception types in Haskell can get complicated
because of:

Higher-order functions Exceptions raised by
higher-order functions depend on the
exceptions raised by functional arguments.

Non-strict evaluation Exceptions are not a form
of control tlow, but are values that can be
embedded inside other values.

» An exception-annotated type for map would be:
map : Va e e e3 ey.
(a1 3, IB(€1 J e2)) N [f1]e4 @
map = Af.Axs. case xs of

Il
(y:ys) = fy:mapfys

[5(81 U ey U 83)]64

Precise Exception lypes

» The exception type above is not a precise as we
would like
€164

: |af1]%4 —
map (const Lg): [ac1]s — [Bler U {E}) e

map id

» A more appropriate type for map (const Lg)
would be:

p) 1 [a1] — BB}
» Exceptional elements in the input list cannot be
propagated to the output.

map (const

Higher-Ranked Exception Types

» The problem is that we have already committed
the first argument of map to be of type

INGEREN [3(81 U)

» It always propagates exceptional values from the
input to the output

» The solution is to move from Hindley—Milner to
System F,,, introducing higher-ranked exception
types and exception operators

: Ve 83.(\v’el.(xel % 5(62 61))

map
— (Vey es.[a4]% — [Blezes U es)]es)
id Vel L ne

const L g:Ve.n° A BLE}
» This gives us the desired exception types:
. Vey e5.| a4 |% —
map (const Lg):Vey es.|a|% —

0(64] €5

map id |
BB

Exception Type Inference

» Higher-ranked exception types are syntactically
heavy; we need type inference

» Type inference is undecidable in System F,, but
exception types piggyback on an underlying type

» Holdermans and Hage (2010) show that type
inference is decidable for a similar higher-ranked
annotated type system with type operators

Work-in-Progress

Imprecise exception semantics Haskell has an
imprecise exception semantics

» Needed for soundness of various program
transformations in an optimizing compiler

» Not adequately captured by ACI1 constraints;
attempt to use equational unification in
Boolean rings instead

MetatheoryIs the combined rewrite system of
STLC and BR still contfluent and normalizing?

» Needed for decidable exception type equality
» Hope to use a general result by Breazu-Tannen

